Luis Aina, Alfredo2023-06-202023-06-202005-02-17[1] The Physics of Quantum Information, edited by D. Bouwmeester, A. Ekert, and A. Zeilinger (Sringer, Berlin, 2000); H. Paul, Introduction to Quantum Optics (Cambridge University Press, Cambridge, England, 2004). [2] A. Luis and L. L. Sánchez-Soto, in Progress in Optics, edited by E. Wolf (Elsevier, Amsterdam, 2000), Vol. 41, p. 421. [3] J. Pollet, O. Méplan, and C. Gignoux, J. Phys. A 28, 7287 (1995). [4] J. J. Gil, J. M. Correas, P. A. Melero, and C. Ferreira sunpublishedd; J. J. Gil, J. M. Correas, C. Ferreira, I. San José, P. A. Melero, and J. Delso (unpublished). [5] J. C. Samson and J. V. Olson, SIAM (Soc. Ind. Appl. Math.) J. Appl. Math. 40, 137 (1981). [6] Ch. Brosseau, Fundamentals of Polarized Light: A Statistical Optics Approach (Wiley, New York, 1998). [7] T. Carozzi, R. Karlsson, and J. Bergman, Phys. Rev. E 61, 2024 (2000). [8] T. Setälä, A. Shevchenko, M. Kaivola, and A. T. Friberg, Phys. Rev. E 66, 016615 (2002). [9] M. R. Dennis, J. Opt. A, Pure Appl. Opt. 6, S26 (2004); e-print physics/0309019. [10] S. G. Schirmer, T. Zhang, and J. V. Leavy, J. Phys. A 37, 1389 (2004). [11] R. D. Mota, M. A. Xicoténcatl, and V. D. Granados, J. Phys. A 37, 2835 (2004). [12] A. P. Alodjants and S. M. Arakelian, J. Mod. Opt. 46, 475 (1999). [13] R. Delbourgo, J. Phys. A 10, 1837 (1977). [14] K. Nemoto, J. Phys. A 33, 3493 (2000); K. Nemoto and B. C. Sanders, ibid. 34, 2051 (2001). [15] P. H. Moravek and D. W. Joseph, J. Math. Phys. 4, 1363 (1963). [16] F. T. Arecchi, E. Courtens, R. Gilmore, and H. Thomas, Phys. Rev. A 6, 2211 (1972). [17] P. W. Atkins and J. C. Dobson, Proc. R. Soc. London, Ser. A 321, 321 (1971); A. Luis and J. Peøina, Phys. Rev. A 53, 1886 (1996). [18] P. Vahimaa and J. Tervo, J. Opt. A, Pure Appl. Opt. 6, S41 (2004). [19] A. Luis, Phys. Rev. A 66, 013806 (2002); Opt. Commun. 216, 165 (2003); Phys. Rev. A 69, 023803 (2004).1050-294710.1103/PhysRevA.71.023810https://hdl.handle.net/20.500.14352/51505©2005 The American Physical Society. I thank Professor J. J. Gil for valuable comments and suggestions. This work has been supported by Project No. FIS2004-01814 of the Spanish Dirección General de Investigación del Ministerio de Educación y Ciencia.We study the polarization properties of three-dimensional quantum light fields by using the Stokes operators. We modify the standard definition of degree of polarization in order to encompass polarization properties in the quantum domain. We show that the states with the largest degree of polarization and least polarization fluctuations are the SU(3) coherent states. We show that the standard quadrature coherent states are Poissonian superpositions of SU(3) coherent states. We examine the polarization properties of some other relevant field states.engQuantum polarization for three-dimensional fields via Stokes operatorsjournal articlehttp://dx.doi.org/10.1103/PhysRevA.71.023810http://journals.aps.org/open access535Electromagnetic-wave polarizationCoherent statesHarmonic-oscillatorVectorsSystemsOpticsÓptica (Física)2209.19 Óptica Física