Herrero, Miguel A.Velázquez, J.J. L.Wrzosek, D.2023-06-202023-06-202000-07-150167-278910.1016/S0167-2789(00)00034-8https://hdl.handle.net/20.500.14352/57587We consider an infinite system of reaction-diffusion equations which describes the dynamics of cluster growth, and show that there are solutions which exist for all times and exhibit a sol-gel transition in a finite time. The manner in which such transition occurs is discussed, and a gelation profile is derived.engSol-gel transition in a coagulation-diffusion modeljournal articlehttp://www.sciencedirect.com/science/article/pii/S0167278900000348http://www.sciencedirect.comrestricted access517.956.4Sol-gel transitioncoagulation-diffusion modelcluster growthsemilinear parabolic equationsfragmentation equationsexistenceblowkineticsEcuaciones diferenciales1202.07 Ecuaciones en Diferencias