Moon, AlvinYoung, AmandaLucia, Angelo2024-01-312024-01-312023-12-27Lucia A, Moon A, Young A (2024) Stability of the Spectral Gap and Ground State Indistinguishability for a Decorated AKLT Model. Ann Henri Poincaré 25(8):3603–3648. https://doi.org/10.1007/s00023-023-01398-81424-06371424-066110.1007/s00023-023-01398-8https://hdl.handle.net/20.500.14352/96880We use cluster expansion methods to establish local the indistiguishability of the finite volume ground states for the AKLT model on decorated hexagonal lattices with decoration parameter at least 5. Our estimates imply that the model satisfies local topological quantum order, and so, the spectral gap above the ground state is stable against local perturbations.engAttribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/Stability of the spectral gap and ground state indistinguishability for a decorated AKLT modeljournal articlehttps//doi.org/10.1007/s00023-023-01398-8https://link.springer.com/article/10.1007/s00023-023-01398-8open accessFísica matemáticaTeoría de los quanta2210.23 Teoría Cuántica