Van Noije, T. P. C.Ernst, M. H.Brito, RicardoGarcía Orza, José Antonio2023-06-202023-06-201997-07-21[1] H. M. Jaeger, S. R. Nagel, and R. P. Behringer, Rev. Mod. Phys. 68, 1259 (1996). [2] I. Goldhirsch and G. Zanetti, Phys. Rev. Lett. 70, 1619 (1993); I. Goldhirsch, M-L. Tan, and G. Zanetti, J. Scient. Comp. 8, 1 (1993); N. Sela, I. Goldhirsch, and S. H. Noskowicz, Phys. Fluids 8, 2337 (1996). [3] S. McNamara, Phys. Fluids A 5, 3056 (1993); S. McNamara and W. R. Young, Phys. Rev. E 53, 5089 (1996). [4] P. Deltour and J.L. Barrat, J. Phys. I (France) 7, 137 (1997). [5] S. E. Esipov and T. Pöschel, J. Stat. Phys. 86, 1385 (1997). [6] J. J. Brey, F. Moreno, and J. W. Dufty, Phys. Rev. E 54, 445 (1996). [7] J. A. G. Orza, R. Brito, T. P. C. van Noije, and M. H. Ernst, Report No. cond-mat/9702029. [8] S. Chapman and T. G. Cowling,The Mathematical Theory of Non-uniform Gases (Cambridge University Press, Cambridge, 1970). [9] The same nonlinear analysis of [2] reveals that the length scale[xi] ~ l0 / √ϵ, associated with clustering, is the same as the correlation length j introduced above Eq (4). [10] J. S. Langer, in Solids Far from Equilibrium, edited by C. Godrèche (Cambridge University Press, Cambridge, 1992), p. 297. [11] L. Landau and E. M. Lifshitz, Fluid Mechanics (Pergamon Press, New York, 1959), Chaps. 3 and 17. [12] G. Grinstein, D.-H. Lee, and S. Sachdev, Phys. Rev. Lett. 64, 1927 (1990); B. Schmittmann and R. K. P. Zia, Statistical Mechanics of Driven Diffusive Systems (Academic Press, New York, 1995). [13] R. Brito, J. A. G. Orza, T. P. C. van Noije, and M. H. Ernst (to be published).0031-900710.1103/PhysRevLett.79.411https://hdl.handle.net/20.500.14352/58516© 1997 The American Physical Society. The authors wish to thank H. J. Bussemaker, D. Frenkel, M. Hagen, and W. v. d. Water for helpful comments and discussions. T. v. N. acknowledges support of the foundation “Fundamenteel Onderzoek der Materie (FOM),” which is financially supported by the Dutch National Science Foundation (NWO). R. B. acknowledges support from DGICYT (Spain) No. PB94-0265.Using fluctuating hydrodynamics we describe the slow buildup of long range spatial correlations in a freely evolving fluid of inelastic hard spheres. In the incompressible limit, the behavior of spatial velocity correlations (including r^(-d) behavior) is governed by vorticity fluctuations only and agrees well with two-dimensional simulations up to 50 to 100 collisions per particle. The incompressibility assumption breaks down beyond a distance that diverges in the elastic limit.engMesoscopic theory of granular fluidsjournal articlehttp://prl.aps.org/pdf/PRL/v79/i3/p411_1http://prl.aps.org/open access536Termodinámica2213 Termodinámica