Fernández Pérez, Luis AntonioMartín Mayor, VíctorSeoane Bartolomé, BeatrizVerrocchio, P.2023-06-202023-06-202012-04-160031-900710.1103/PhysRevLett.108.165701https://hdl.handle.net/20.500.14352/45039© 2012 American Physical Society. We thank K. Binder, C. de Vega, L. G. MacDowell, B. Lucini, and D. Yllanes for enlightening discussions. Simulations were carried out at BIFI. We acknowledge support from MICINN, Spain, through research Contracts No. FIS2009-12648-C03, No. FIS2008 01323, and from UCM-Banco de Santander. B. S. was supported by the FPU program.We present a tethered Monte Carlo simulation of the crystallization of hard spheres. Our method boosts the traditional umbrella sampling to the point of making practical the study of constrained Gibbs’ free energies depending on several crystalline order parameters. We obtain high-accuracy estimates of the fluid-crystal coexistence pressure for up to 2916 particles (enough to accommodate fluid-solid interfaces). We are able to extrapolate to infinite volume the coexistence pressure [p_(co) = 11.5727(10)k_(B)T/σ^(3)] and the interfacial free energy [γ_({100}) = 0.636(11)k_(B)T/σ^(2)].engEquilibrium fluid-solid coexistence of hard spheresjournal articlehttp://doi.org/10.1103/PhysRevLett.108.165701http://journals.aps.org/open access51-73531st-order phase-transitionsLennard-Jones systemMonte-CarloFree-energyColloidal spheresDropletsSimulationsNucleationCrystalsEntropy.Física (Física)Física-Modelos matemáticos22 Física