Barragán García, Vicenta MaríaRuiz Bauzá, Carlos2023-06-202023-06-202002-03-011. Helfferich, F., “Ion-Exchange.” Dover, New York, 1995. 2. Mulder, M., “Basic Principles of Membrane Technology,” Kluwer Academic, Amsterdam, 1991. 3. Osada,Y., and Nakagawa, T., “Membrane Science and Technology,” Marcel Dekker, New York, 1992. 4. Sørensen, T. S. (Ed.), “Surface Chemistry and Electrochemistry of Membranes.” Marcel Dekker, New York, 1999. 5. Hamann, C. H., Theile, V., and Koter, S., J. Membr. Sci. 78, 147 (1993). 6. Chou, T. J., and Tanioka, A., J. Colloid Interface Sci. 212, 576 (1999). 7. Hogart, M. P., and Hards, G. A., Platinum Met. Rev. 40, 150 (1996). 8. Kauranen, P. S., and Skou, E., J. Appl. Electrochem. 26, 909 (1996). 9. Scott, D., Taama, W., and Cruickshank, J., J. Appl. Electrochem. 28, 289 (1998). 10. Bitter, J. G. A., “Transport Mechanisms in Membrane Separation Processes.” Plenum, New York, 1991. 11. Hsieh, H. P., “Inorganic Membranes for Separation and Reaction.” Elsevier, Amsterdam, 1996. 12. Rubinstein, I., and Zaltzman, B., in “Surface Chemistry and Electrochemistry of Membranes” (T. S. Sørensen, Ed.), Chap. 17. Marcel Dekker, New York, 1999. 13. Barragán, V. M., and Ruíz-Bauzá, C., J. Colloid Interface Sci. 205, 365 (1998). 14. Ortíz-Zárate, J. M., García-López, F., and Mengual, J. I., J. Non-Equilib. Thermodyn. 14, 267 (1989). 15. Barragán, V. M., Ruíz-Bauzá, C., and Mengual, J. I., J. Colloid Interface Sci. 168, 458 (1994). 16. Bockris, J. O’M., and Reddy, A. K. N., “Modern Electrochemistry,” Vol. 1, Plenum/Rosseta, New York, 1973. 17. Khedr, G., Schmitt, A., and Varoqui, R., J. Colloid Interface Sci. 66, 516 (1978). 18. Lobo, V., “Electrolyte Solutions: Literature Data on Thermodynamic and Transport Properties.” Coimbra Editora, Coimbra, 1975. 19. Bagotzky, V. S., “Fundamentals of Electrochemistry.” Plenum, New York, 1993. 20. Chou, T. J., and Tanioka, A., J. Membr. Sci. 144, 275 (1998). 21. Inenaga, K., and Yoshida, N., J. Membr. Sci. 6, 271 (19800021-979710.1006/jcis.2001.8065https://hdl.handle.net/20.500.14352/58421�© 2002 Elsevier Science (USA)The current-voltage curves for a cation-exchange membrane separating two equal methanol-water electrolyte solutions were determined under different experimental conditions. From these curves, the values of the limiting current density, I-L, were determined. The influence of the volume percentage of methanol in the solvent on the results was analyzed. The presence of methanol in the solutions was shown not to affect the shape of the current-voltage curves typical of aqueous solutions. However, the system resistance and the values of the limiting current density were both greatly influenced by the content of methanol. Thus, the value of the resistance increased and the limiting current decreased with increasing methanol content of the solution.engCurrent-voltage curves for a cation-exchange membrane in methanol-water electrolyte solutionsjournal articlehttp://dx.doi.org/10.1006/jcis.2001.8065http://pdn.sciencedirect.com/restricted access536PermeabilityLayers.Termodinámica2213 Termodinámica