Arrieta Algarra, José MaríaCholewa, Jan W.Dlotko, TomaszRodríguez Bernal, Aníbal2023-06-202023-06-2020040362-546X10.1016/j.na.2003.09.023https://hdl.handle.net/20.500.14352/50335In this paper we give general and flexible conditions for a reaction diffusion equation to be dissipative in an-unbounded domain. The functional setting is based on standard Lebesgue and Sobolev-Lebesgue spaces. We show how the reaction and diffusion mechanisms have to work together to obtain the asymptotic compactness of solutions and therefore the existence of the compact attractor. In particular cases, our results allow us to improve some previous known results.engAsymptotic behavior and attractors for reaction diffusion equations in unbounded domainsjournal articlehttp://www.sciencedirect.com/science/article/pii/S0362546X03003808http://www.sciencedirect.com/restricted access517.98DissipativityAttractorsAsymptotic behaviorReaction-diffusionAssymptotic compactnessUnbounded domainsSemilinear parabolic equationsNonlinear boundary-conditionsHeat-equationsBlow-upSchrodinger operatorEvolution-equationsGlobal attractorExistenceSemigroupsSystemsAnálisis funcional y teoría de operadores