Cembranos, Pilar2023-06-212023-06-211981https://hdl.handle.net/20.500.14352/65474Proceedings of the Eighth Portuguese-Spanish Conference on Mathematics, Vol. II (Coimbra, 1981)Let C(K,E) be the vector space of all continuous functions on a compact Hausdorff space K with values in a reflexive Banach space E, endowed with the usual uniform norm. We prove in this paper that the Banach space C(K,E) is a Grothendieck space if and only if C(K,E) does not contain a complemented subspace isomorphic to c0A characterization of when C(K,E) is a Grothendieck space, for reflexive spaces E.book partmetadata only access517.98AnĂ¡lisis funcional y teorĂ­a de operadores