Arrieta Algarra, José MaríaCónsul, NeusRodríguez Bernal, Aníbal2023-06-202023-06-2020040044-227510.1007/s00033-003-2063-zhttps://hdl.handle.net/20.500.14352/50338We prove the existence of nonconstant stable stationary solutions of an evolution problem with a nonlinear reaction acting on the boundary. These solutions present layers at certain points of the boundary. We also study the behavior of these solutions as the small parameter appearing in the equation approaches zero and show some stability properties of the profiles given by these equilibrium solutions.engStable boundary layers in a diffusion problem with nonlinear reaction at the boundaryjournal articlehttp://download.springer.com/static/pdf/453/art%253A10.1007%252Fs00033-003-2063-z.pdf?auth66=1360940295_9a26f43517b93d290ff05a6bb450d133&ext=.pdfhttp://link.springer.com/restricted access517.9Boundary reactionPatternsBoundary layersEnergyMinimizersHeat-equationsSpacesBoundsTimeNonconstant equilibriaParabolic problemsTransition layersEquationsAttractorsStabilityEcuaciones diferenciales1202.07 Ecuaciones en Diferencias