Nemes, Norbert MarcelVisani, C.León Yebra, CarlosGarcía Hernández, M.Simon, F.Fehér, T.te Velthuis, S. G. E.Hoffmann, A.Santamaría Sánchez-Barriga, Jacobo2023-06-202023-06-202010-07-191) S. Oh, D. Youm, M. R. Beasley, Appl. Phys. Lett., 71, 2376, 1997. 2) S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, D. M. Treger, Science, 294, 1488, 2001. 3) R. Held, J. Xu, A. Schmehl, C. W. Schneider, J. Mannhart, M. R. Beasley, Appl. Phys. Lett., 89, 163509, 2006. 4) N. M. Nemes, J. E. Fischer, G. Baumgartner, L. Forro, T. Feher, G. Oszlanyi, F. Simon, A. Janossy, Phys. Rev. B, 61, 7118, 2000. 5) J. Y. Gu, C.-Y. You, J. S. Jiang, J. Pearson, Ya. B. Bazaliy, S. D. Bader, Phys. Rev. Lett., 89, 267001, 2002. 6) A. Potenza, C. H. Marrows, Phys. Rev. B, 71, 180503R, 2005. 7) R. Steiner, P. Ziemann, Phys. Rev. B, 74, 094504, 2006. 8) I. C. Moraru, W. P. Pratt, Jr., N. O. Birge, Phys. Rev. Lett., 96, 037004, 2006. 9) A. Y. Rusanov, S. Habraken, J. Aarts, Phys. Rev. B, 73, 060505, 2006. 10) A. Singh, C. Sürgers, H. v. Löhneysen, Phys. Rev. B, 75, 024513, 2007. 11) G.-X. Miao, A. V. Ramos, J. S. Moodera, Phys. Rev. Lett., 101, 137001, 2008. 12) T. Endo, A. Hoffmann, J. Santamaría, I. K. Schuller, Phys. Rev. B, 54, R3750, 1996. 13) V. Peña, Z. Sefrioui, D. Arias, C. León, J. Santamaría, J. L. Martínez, S. G. E. te Velthuis, A. Hoffmann, Phys. Rev. Lett., 94, 057002, 2005. 14) N. M. Nemes, M. García-Hernández, S. G. E. te Velthuis, A. Hoffmann, C. Visani, J. García-Barriocanal, V. Peña, D. Arias, Z. Sefrioui, C. León, J. Santamaría, Phys. Rev. B, 78, 094515, 2008. 15) C. Visani, N. M. Nemes, M. Rocci, Z. Sefrioui, C. León, S. G. E. te Velthuis, A. Hoffmann, M. R. Fitzsimmons, F. Simon, T. Feher, M. García-Hernández, J. Santamaría, Phys. Rev. B, 81, 094512, 2010. 16) Z. Sefrioui, D. Arias, V. Peña, J. E. Villegas, M. Varela, P. Prieto, C. León, J. L. Martínez, J. Santamaría, Phys. Rev. B, 67, 214511, 2003. 17) M. Vogel, T. Mewes, Stoner–Wohlfarth astroid applet, http://www.bama.ua.edu/~tmewes/Java/Astroid/StonerAstroid.shtml, August 28, 2009. 18) M. C. Cyrille, S. Kim, M. E. Gómez, J. Santamaría, K. M. Krishnan, I. K. Schuller, Phys. Rev. B, 62, 3361, 2000. 19) J. Santamaría, M. E. Gómez, J. L. Vicent, K. M. Krishnan, I. K. Schuller, Phys. Rev. Lett., 89, 190601, 2002.0003-695110.1063/1.3464960https://hdl.handle.net/20.500.14352/44573© 2010 American Institute of Physics. We thank A. Goldman for fruitful discussions within the framework of the joint U.S.-Spain NSF Materials World Network Grant No. 709584. Work was supported by the U.S. Department of Energy, Basic Energy Science under Contract Nos. DE-AC02-06CH11357 and DE-AC02NA25396, by Spanish MICINN under Contracts “Ramon y Cajal,” Grant Nos. MAT2008-06517 and CONSOLIDER INGENIO 2010 CSD2009-00013 IMAGINE, by CAM under PHAMA Grant No. S2009/Mat-1756, and by OTKA Grant Nos. K68807 and PF63954 and the “Bolyai” program of the Hungarian Academy of Sciences.We report a memory concept utilizing ferromagnet/superconductor/ferromagnet La_(0.7)Ca_(0.3)MnO_(3)/YBa_(2)Cu_(3)O_(7)/La_(0.7)Ca_(0.3)MnO_(3) thin film hybrid structures. The orientation of the magnetic field with respect to the ferromagnetic easy axis has a strong effect on superconductivity as indicated by a strong variation in the magnetoresistance MR. MR can be controlled by rotating a small magnetic field applied in the plane of the film in a way that is determined by the in-plane biaxial magnetic anisotropy. The proposed memory device has the advantages of superconducting detection elements fast response and low dissipation, small 100–150 Oe writing fields, and resistance read-out without need for applied field.engMagnetic memory based on La_(0.7)Ca_(0.3)MnO_(3)/YBa_(2)Cu_(3)O_(7)/La_(0.7)Ca_(0.3)MnO_(3) ferromagnet/superconductor hybrid structuresjournal articlehttp://dx.doi.org/10.1063/1.3464960http://scitation.aip.org/open access537Enhancement.ElectricidadElectrónica (Física)2202.03 Electricidad