Blázquez Salcedo, José LuisGonzález Romero, Luis ManuelKunz, JuttaMojica, SindyNavarro Lérida, Francisco2023-06-182023-06-182016-01-28[1] C. M. Will, Living Rev. Relativity 17, 4 (2014). [2] P. Haensel, A. Potekhin, and D. Yakovlev, Neutron Stars 1: Equation of State and Structure, Astrophysics and Space Science Library (Springer, New York, 2006). [3] P. B. Demorest, T. Pennucci, S. M. Ransom, M. S. E. Roberts, and J. W. T. Hessels, Nature (London) 467, 1081 (2010). [4] J. Antoniadis, P. C. C. Freire, N. Wex, T. M. Tauris, R. S. Lynch, M. H. van Kerkwijk, M. Kramer, C. Bassa, V. S. Dhillon, T. Driebe et al., Science 340, 1233232 (2013). [5] M. Pitkin, S. Reid, S. Rowan, and J. Hough, Living Rev. Relativity 14, 5 (2011). [6] K. D. Kokkotas and B. G. Schmidt, Living Rev. Relativity 2, 2 (1999). [7] H.-P. Nollert, Classical Quantum Gravity 16, R159 (1999). [8] V. Ferrari and L. Gualtieri, Gen. Relativ. Gravit. 40, 945 (2008). [9] F. Moura and R. Schiappa, Classical Quantum Gravity 24, 361 (2007). [10] P. Kanti, B. Kleihaus, and J. Kunz, Phys. Rev. Lett. 107, 271101 (2011). [11] P. Kanti, B. Kleihaus, and J. Kunz, Phys. Rev. D 85, 044007 (2012). [12] E. Berti, E. Barausse, V. Cardoso, L. Gualtieri, P. Pani, U. Sperhake, L. C. Stein, N. Wex, K. Yagi, T. Baker et al., Classical Quantum Gravity 32, 243001 (2015). [13] P. Kanti, N. E. Mavromatos, J. Rizos, K. Tamvakis, and E. Winstanley, Phys. Rev. D 54, 5049 (1996). [14] P. Pani and V. Cardoso, Phys. Rev. D 79, 084031 (2009). [15] P. Pani, C. F. B. Macedo, L. C. B. Crispino, and V. Cardoso, Phys. Rev. D 84, 087501 (2011). [16] B. Kleihaus, J. Kunz, and E. Radu, Phys. Rev. Lett. 106, 151104 (2011). [17] B. Kleihaus, J. Kunz, and S. Mojica, Phys. Rev. D 90, 061501 (2014). [18] P. Pani, E. Berti, V. Cardoso, and J. Read, Phys. Rev. D 84, 104035 (2011). [19] K. Yagi and N. Yunes, Science 341, 365 (2013). [20] K. D. Kokkotas, T. A. Apostolatos, and N. Andersson, Mon. Not. R. Astron. Soc. 320, 307 (2001). [21] O. Benhar, V. Ferrari, and L. Gualtieri, Phys. Rev. D 70, 124015 (2004). [22] J. L. Blázquez-Salcedo, L. M. González-Romero, and F. Navarro-Lérida, Phys. Rev. D 87, 104042 (2013). [23] J. L. Blázquez-Salcedo, L. M. González-Romero, and F. Navarro-Lérida, Phys. Rev. D 89, 044006 (2014). [24] K. Yagi, Phys. Rev. D 86, 081504 (2012). [25] T. Regge and J. A. Wheeler, Phys. Rev. 108, 1063 (1957). [26] F. J. Zerilli, Phys. Rev. Lett. 24, 737 (1970). [27] K. S. Thorne, Rev. Mod. Phys. 52, 299 (1980). [28] U. Ascher, J. Christiansen, and R. D. Russell, Mathematical modeling and computational experiment 33, 659 (1979). [29] W. Israel, Nuovo Cimento B 44, 1 (1966). [30] F. Douchin and P. Haensel, Astron. Astrophys. 380, 151 (2001). [31] A. Akmal, V. R. Pandharipande, and D. G. Ravenhall, Phys. Rev. C 58, 1804 (1998). [32] I. Bednarek, P. Haensel, J. L. Zdunik, M. Bejger, and R. Mańka, Astron. Astrophys. 543, A157 (2012). [33] S. Weissenborn, D. Chatterjee, and J. Schaffner-Bielich, Phys. Rev. C 85, 065802 (2012). [34] S. Weissenborn, D. Chatterjee, and J. Schaffner-Bielich, Phys. Rev. C 90, 019904 (2014). [35] M. Alford, M. Braby, M. Paris, and S. Reddy, Astrophys. J. 629, 969 (2005). [36] L. Bonanno and A. Sedrakian, Astron. Astrophys. 539, A16 (2012). [37] S. Weissenborn, I. Sagert, G. Pagliara, M. Hempel, and J. Schaffner-Bielich, Astrophys. J. Lett. 740, L14 (2011). [38] C. H. Lenzi, M. Malheiro, R. M. Marinho, G. F. Marranghello, and C. Providncia, J. Phys. Conf. Ser. 154, 012039 (2009). [39] D.-H. Wen, B.-A. Li, and P. G. Krastev, Phys. Rev. C 80, 025801 (2009). [40] K. D. Kokkotas and B. F. Schutz, Gen. Relativ. Gravit. 18, 913 (1986). [41] K. D. Kokkotas and B. F. Schutz, Mon. Not. R. Astron. Soc. 255, 119 (1992). [42] O. Benhar, E. Berti, and V. Ferrari, Mon. Not. R. Astron. Soc. 310, 797 (1999). [43] N. Andersson and K. D. Kokkotas, Phys. Rev. Lett. 77, 4134 (1996). [44] N. Andersson and K. D. Kokkotas, Mon. Not. R. Astron. Soc. 299, 1059 (1998). AXIAL QUASINORMAL MODES OF EINSTEIN-GAUSS- … PHYSICAL REVIEW D 93, 024052 (2016)1550-799810.1103/PhysRevD.93.024052https://hdl.handle.net/20.500.14352/24437© 2016 American Physical Society. J. L. B. S., J. K. and S. M. gratefully acknowledge support by the DFG Research Training Group 1620 Models of Gravity, as well as support from FP7, Marie Curie Actions, People, International Research Staff Exchange Scheme (IRSES-606096). J. L. B. S., L. M. G. R., J. K. and F. N. L. gratefully acknowledge support from MINECO, under research Project No. FIS2011-28013.We investigate axial quasinormal modes of realistic neutron stars in Einstein-Gauss-Bonnet-dilaton gravity. We consider eight realistic equations of state containing nuclear, hyperonic, and hybrid matter. We focus on the fundamental curvature mode and compare the results with those of pure Einstein theory. We observe that the frequency of the modes is increased by the presence of the Gauss-Bonnet-dilaton, while the impact on the damping time is typically smaller. Interestingly, we obtain that universal relations valid in pure Einstein theory still hold for Einstein-Gauss-Bonnet-dilaton gravity, and we propose a method to use these phenomenological relations to constrain the value of the Gauss-Bonnet coupling.engAxial quasinormal modes of Einstein-Gauss-Bonnet-dilaton neutron starsjournal articlehttp://dx.doi.org/10.1103/PhysRevD.93.024052http://journals.aps.org/open access539.1Equation of stateBlack holesGeneral RelativityW-modesMatterStability.Física nuclear2207 Física Atómica y Nuclear