Cobos Díaz, Fernando2023-06-212023-06-2119870004-208010.1007/BF02384444https://hdl.handle.net/20.500.14352/64638The paper deals with ideals of operators for which the sequence of their entropy numbers(en(T)) belongs to a Lorentz-Marcinkiewicz space `,q, where is a so-called function parameter. In the case (t) = tp the classical Lorentz space `p,q results. These ideals are compared with that obtained from the approximation, Gelfand and Kolmogorov numbers. The author further proves interpolation theorems and results about eigenvalue distributions.Entropy and Lorentz-Marcinkiewicz Operator Idealsjournal articlehttps//doi.org/10.1007/BF02384444http://www.springerlink.com/content/48523j7gg13t6r4h/metadata only access517.98Ideals of operatorsEntropy numbersLorentz-Marcinkiewicz spaceApproximationGelfand and Kolmogorov numbersInterpolation theoremsEigenvalue distributions ClassificationAnálisis funcional y teoría de operadores