López de Haro, M.Fernández Tejero, Carlos2023-06-202023-06-202004-10-081 J. L. Lebowitz, Phys. Rev. 133, 895 (1964). 2 J. L. Lebowitz and J. W. Rowlinson, J. Chem. Phys. 41, 133 (1964). 3 T. Boublík, J. Chem. Phys. 53, 471 (1970); G. A. Mansoori, N. F. Carnahan, K. E. Starling, and T. W. Leland, ibid. 54, 1523 (1971). 4 T. Biben and J. P. Hansen, Phys. Rev. Lett. 66, 2215 (1991). 5 C. Barrio and J. R. Solana, J. Chem. Phys. 119, 3826 (2003). 6 T. Coussaert and M. Baus, Phys. Rev. Lett. 79, 1881 (1997); 80, 4832 (1998); J. Chem. Phys. 109, 6012 (1998). 7 C. Regnaut, A. Dyan, and S. Amokrane, Mol. Phys. 99, 2055 (2001). 8 T. Kihara, Rev. Mod. Phys. 27, 412 (1955). 9 T. Kihara and K. Miyoshi, J. Stat. Phys. 13, 337 (1975). 10 F. Saija, G. Fiumara, and P. V. Giaquinta, Mol. Phys. 87, 991 (1996). 11 E. Enciso, N. G. Almarza, D. S. Calzas, and M. A. González, Mol. Phys. 92, 173 (1997). 12 E. Enciso, N. G. Almarza, M. A. González, and F. J. Bermejo, Phys. Rev. E 57, 4486 (1998). 13 R. J. Wheatley, F. Saija, and P. V. Giaquinta, Mol. Phys. 94, 877 (1998). 14 A. Yu. Vlasov, X. M. You, and A. J. Masters, Mol. Phys. 100, 3313 (2002). 15 S. B. Yuste, A. Santos, and M. López de Haro, Europhys. Lett. 52, 158 (2000). 16 E. Z. Hamad, J. Chem. Phys. 103, 3733 (1995). 17 A. Santos, S. B. Yuste, and M. López de Haro, Mol. Phys. 96, 1 (1999); J. Chem. Phys. 117, 5785 (2002). 18 M. Barosová, A. Malijevský, S. Labík, and W. R. Smith, Mol. Phys. 87, 423 (1996). 19 D. L. H. Yau, K. Y. Chan, and D. Henderson, Mol. Phys. 88, 1237 (1996). 20 A. Malijevský and J. Veverka, Phys. Chem. Chem. Phys. 1, 4267 (1999). 21 D. Cao, K. Y. Chan, and D. Henderson, Mol. Phys. 98, 619 (2000). 22 A. Yu. Vlasov and A. J. Masters, Fluid Phase Equilib. 212, 183 (2003).0021-960610.1063/1.1791611https://hdl.handle.net/20.500.14352/50894© 2004 American Institute of Physics. The authors acknowledge financial support from DGAPA-UNAM (México) (M.L.H.) and from the Ministerio de Ciencia y Tecnología (Spain) Ref. BFM2001-1017- C03-03 (C.F.T.).The demixing transition of a binary fluid mixture of additive hard spheres is analyzed for different size asymmetries by starting from the exact low-density expansion of the pressure. Already within the second virial approximation the fluid separates into two phases of different composition with a lower consolute critical point. By successively incorporating the third, fourth, and fifth virial coefficients, the critical consolute point moves to higher values of the pressure and to lower values of the partial number fraction of the large spheres. When the exact low-density expansion of the pressure is rescaled to higher densities as in the Percus-Yevick theory, by adding more exact virial coefficients a different qualitative movement of the critical consolute point in the phase diagram is found. It is argued that the Percus-Yevick factor appearing in many empirical equations of state for the mixture has a deep influence on the location of the critical consolute point, so that the resulting phase diagram for a prescribed equation has to be taken with caution.engRescaled density expansions and demixing in hard-sphere binary mixturesjournal articlehttp://dx.doi.org/10.1063/1.1791611http://scitation.aip.org/open access536Pair correlation-functionsEquation-of-stateVirial-coefficientsThermodynamic propertiesPhase-separationConvex-bodiesFluidsGasesTermodinámica2213 Termodinámica