Martil De La Plaza, IgnacioGarcía Hemme, EricGarcía Hernansanz, RodrigoGonzález Díaz, GermánOlea Ariza, JavierPastor Pastor, DavidPrado Millán, Álvaro Del2023-06-192023-06-192014-05-260003-695110.1063/1.4879851https://hdl.handle.net/20.500.14352/33683© AIP Publishing LLC. The authors would like to acknowledge the CAI de Técnicas Físicas of the Universidad Complutense de Madrid for the ion implantations and metallic evaporations. This work was partially supported by the Project NUMANCIA II (Grant No. S-2009/ENE/1477) funded by the Comunidad de Madrid. Research by E. Garca-Hemme was also supported by a PICATA predoctoral fellowship of the Moncloa Campus of International Excellence (UCM-UPM). J. Olea and D. Pastor thank Professor A. Mart_ı and Professor A. Luque for useful discussions and guidance and acknowledge financial support from the MICINN within the program Juan de la Cierva (JCI-2011-10402 and JCI-2011-11471), under which this research was undertaken.We report room-temperature operation of 1 x 1 cm(2) infrared photoconductive photodetectors based on silicon supersaturated with titanium. We have fabricated these Si-based infrared photodetectors devices by means of ion implantation followed by a pulsed laser melting process. A high sub-band gap responsivity of 34 mVW(-1) has been obtained operating at the useful telecommunication applications wavelength of 1.55 mu m (0.8 eV). The sub-band gap responsivity shows a cut-off frequency as high as 1.9 kHz. These Si-based devices exhibit a non-previous reported specific detectivity of 1.7 x 10(4) cm Hz(1/2) W-1 at 660Hz, under a 1.55 mu m wavelength light. This work shows the potential of Ti supersaturated Si as a fully CMOS-compatible material for the infrared photodetection technology.engRoom-temperature operation of a titanium supersaturated silicon-based infrared photodetectorjournal articlehttp://dx.doi.org/10.1063/1.4879851http://scitation.aip.org/open access537TransitionInsulatorGold.ElectricidadElectrónica (Física)2202.03 Electricidad