Cobos Díaz, FernandoFernández Besoy, Blanca2023-06-172023-06-172018-06-011432-094010.1016/j.jmaa.2018.05.082https://hdl.handle.net/20.500.14352/12191We work with spaces (A0;A1)θ;q;A which are logarithmic perturbations of the real interpolation spaces. We determine the dual of (A0;A1)θ;q;A when0 < q < 1. As we show, if θ = 0 or 1 then the dual space depends on the relationship between q and A. Furthermore we apply the abstract results to compute the dual space of Besov spaces of logarithmic smoothness and the dual space of spaces of compact operators in a Hilbert space which are closeto the Macaev ideals.engDuality for logarithmic interpolation spaces when 0 < q < 1 and applicationsjournal articlehttps//doi.org/10.1016/j.jmaa.2018.05.082https://www.sciencedirect.com/science/article/pii/S0022247X1830489Xopen access517.538.5517.518.8Teoría de la aproximaciónApproximation spacesBesov spaces Compact embeddingsEntropy numbersApproximation numbersMatemáticas (Matemáticas)Análisis matemático12 Matemáticas1202 Análisis y Análisis Funcional