Gómez, I.Díez, E.Domínguez-Adame Acosta, FranciscoOrellana, P.2023-06-202023-06-202003-061. T. C. L. G. Sollner, W. D. Goodhue, P. E. Tannenwald, C. D. Parker, and D. D. Peck, Appl. Phys. Lett. 43, 588 (1984). 2. B. Ricco and M. Ya. Azbel, Phys. Rev. B 29, 1970 (1984). 3. N. S. Wingreen, K. W. Jacobsen, and J. W. Wilkins, Phys. Rev. Lett. 61, 1396 (1988). 4. W. Cai, T. F. Zheng, P. H. Hu, B. Yudanin, and M. Lax, Phys. Rev. Lett. 63, 418 (1989). 5. V. A. Chitta, C. Kutter, R. E. M. de Bekker, J. C. Maan, S. J. Hawksworth, J. M. Chamberlain, M. Henini, and G. Hill, J. Phys.: Condens. Matter 6, 3945 (1994). 6. J. Iñarrea, G. Platero, and C. Tejedor, Semicond. Sci. Technol. 9, 515 (1994). 7. A. Levy Yeyati, F. Flores, and E. V. Anda, Phys. Rev. B 47, 10 543 (1993). 8. P. Orellana and F. Claro, Appl. Phys. Lett. 75, 1643 (1999). 9. P. Orellana, F. Claro, and E. Anda, Phys. Rev. B 62, 9959 (2000). 10. U. Penner, H. R¨ucker, and I. N. Yassievich, Semicond. Sci. Technol. 13, 709 (1998). 11. V. D. Freilikher and S. A. Gradeskul, Prog. Opt. 30, 137 (1991). 12. L. E. Henrickson, K. Hirakawa, J. Frey, and T. Ikoma, J. Appl. Phys. 71, 3883 (1992). 13. R. Landauer, IBM J. Res. Dev. 1, 223 (1957); M. Büttiker, Phys. Rev. Lett. 57, 1761 (1986); M. Büttiker, IBM J. Res. Dev. 32, 63 (1988); M. B¨uttiker, IBM J. Res. Dev. 32, 317 (1988). 14. D. Fisher and P. A. Lee, Phys. Rev. B 23, 6851 (1981). 15. R. M. Feenstra, D. A. Collins, D. Z. -Y. Ting, M. W. Wang, and T. C. McGill, Phys. Rev. Lett. 72, 2749 (1994). 16. H. W. Salemik, O. Albrektsen, and P. Koenraad, Phys. Rev. B 45, 6946 (1992)1386-947710.1016/S1386-9477(02)01120-7https://hdl.handle.net/20.500.14352/51259© 2003 Elsevier Science B.V. All rights reserved. The authors want to thank V. A. Malyshev for the critical reading of the manuscript. Work in Madrid was supported by DGI-MCyT (Project MAT2000-0734) and CAM (Project 07N/0075/2001). P. Orellana would like to thank Milenio ICM P99-135-F and Cátedra Presidencial de Ciencias for financial support.We present a novel model to calculate vertical transport properties such as conductance and current in unintentionally disordered double-barrier GaAs-AlxGa1-xAs heterostructures. The source of disorder comes from interface roughness at the heterojunctions (lateral disorder) as well as spatial inhomogeneities of the Al mole fraction in the barriers (compositional disorder). Both lateral and compositional disorder break translational symmetry along the lateral direction and therefore electrons can be scattered off the growth direction. The model correctly describes channel mixing due to these elastic scattering events. In particular, for realistic degree of disorder, we have found that the effects of compositional disorder on transport properties are negligible as compared to the effects due to lateral disorder.engElectron scattering on disordered double-barrier GaAs-AlxGa1-xAs heterostructuresjournal articlehttp://dx.doi.org/10.1016/S1386-9477(02)01120-7http://www.sciencedirect.comhttp://arxiv.org/abs/cond-mat/0112216open access538.9Interface RoughnessModelSuperlatticesConductionCoherentFísica de materiales