Herrero, Miguel A.Vázquez, Juan Luis2023-06-202023-06-201987-010036-141010.1137/0518011https://hdl.handle.net/20.500.14352/57789We consider the equation ut=(Um)xx-λun with m>1, λ>0, n≥m as a model for heat diffusion with absorption. Hence we assume that u≥0 for xЄR, t≥0. We study the regularity of the solution to the Cauchy problem for this degenerate parabolic equation. When the initial datum uo(X)is positive only in a part of the space R, we also study the regularity of the free boundaries that appear. The asymptotic behavior of solutions and free boundaries is also discussed.engThe one-dimensional nonlinear heat-equation with absorption: regularity of solutions and interfacesjournal articlehttp://epubs.siam.org/simax/resource/1/sjmaah/v18/i1/p149_s1?isAuthorized=nohttp://epubs.siam.orgrestricted access517.956.4536.2Nonlinear diffusion with absorptionregularityinterfaces or free boundarieswaiting timeasymptotic behaviorEcuaciones diferenciales1202.07 Ecuaciones en Diferencias