García, J.A.Plugaru, RMéndez Martín, BianchiPiqueras de Noriega, JavierTate, T. J.2023-06-202023-06-202004-071. J. Michel, J. L. Benton, R. F. Ferrante, D. C. Jacobson, D. J. Eaglesham, E. A. Fitzgerald, Y. H. Xie, J. M. Poate, L. C. Kimerling, J. Appl. Phys. 70, 2672 (1991) 2. A. Polman, J. Appl. Phys. 82, 1 (1997) 3. H. Przybylinska, W. Jantsch, Y. Suprun-Belevitch, M. Stepikhova, L. Palmetshofer, G. Hendorfer, A. Kozanecki, R. J. Wilson, B. J. Sealy, Phys. Rev. B 54, 2532 (1996) 4. M. Suezawa, M. Sumino, Jpn. J. Appl. Phys. 33, L1782 (1994) 5. A. Terrasi, G. Franz, S. Coffa, F. Priolo, F. D’Acapito, S. Mobilio, Appl. Phys. Lett. 70, 1712 (1997) 6. U. Wahl, A. Vantomme, G. Langouche, J. G. Correia, J. Lumin. 80, 303 (1999) 7. S. B. Aldabergenova, H. P. Strunk, P. C. Taylor A. A. Andreev, J. Appl. Phys. 90, 2773 (2001) 8. E. Nogales, B. M´endez, J. Piqueras, R. Plugaru, A. Coraci, J. A. García, J. Phys. D: Appl. Phys. 35, 295 (2002) 9. R. Plugaru, B. Méndez, J. Piqueras, T. J. Tate, J. Phys. Cond. Matter 14, 13153 (2002) 10. J. Piqueras, B. M´endez, R. Plugaru, G. Craciun, J. A. García, A. Rem´on, Appl. Phys. A 68, 329 (1999) 11. R. Plugaru, G. Craciun, N. Nastase, B. Méndez, A. Cremades, J. Piqueras, E. Nogales, J. Porous Mater. 7, 291 (1999) 12. D. J. Eaglesham, J. Michel, E. A. Fitzgerald, D. C. Jacobson, J. M. Poate, J. L. Benton, A. Polman, Y. H. Xie, L. C. Kimerling, Appl. Phys. Lett. 58, 2797 (1991) 13. D. L. Adler, D. C. Jacobson, D. J. Eaglesham, M. A. Marcus, J. L. Benton, J. M. Poate, P. H. Citrin, Appl. Phys. Lett. 61, 2181 (1992) 14. R. Serna, M. Lohmeier, P. M. Zagwijin, E. Vlieg, A. Polman, Appl. Phys. Lett. 66, 1385 (1995) 15. Y. Kanemitsu, J. Lumin. 83-84, 283 (1999) 16. K. Nakashima, O. Eryu, H. Akiyama, Y. Maeda, H. Ebisu, Nucl. Instrum. Methods B 175, 208 (2001) 17. P. H. Citrin, P. A. Northrup, R. Birkhahn, J. Steckl, Appl. Phys. Lett. 76, 2865 (2000) 18. G. Franzo, F. Priolo, S. Coffa, J. Lumin. 80, 19 (1999) 19. E. Nogales, B. Méndez, J. Piqueras, R. Plugaru, J. A. García, T. J. Tate, Mat. Res. Symp. Proc. 692, 455 (2002)1286-004210.1051/epjap:2004083https://hdl.handle.net/20.500.14352/50952© EDP Sciences. International Conference on Defects - Recognition, Imaging and Physics in Semiconductors (DRIP 10). (10.2003.Batz sur Mer, FRANCE ). This work has been supported by MCYT (Project MAT 2000- 2119). R. Plugaru acknowledges MECD for the research grant SB2000-0164.The luminescence of amorphous silicon layers either implanted with Er or co-implanted with Er and O has been studied by photoluminescence (PL) and cathodoluminescence (CL) in the scanning electron microscope. Annealing in nitrogen causes the formation of oxide species and Er-Si complexes or precipitates as well a spectral changes in the visible and infrared ranges. The main CL emission takes place in the visible range while PL spectra reveal intense visible and infrared emission. CL spectra show blue-violet, or green, emission bands whose relative intensities depend on the post-implantation annealing temperature. The PL spectra show a blue-violet band with a series of lines in the violet region related to phonon assisted transitions as well as different emission bands in the range 1200-1500 nm. The influence of the annealing-induced structural changes on the observed spectra is discussed.spaResonant excitation of Er ion luminescence in a nanocrystalline silicon matrixjournal articlehttp://dx.doi.org/10.1051/epjap:2004083http://www.epjap.org/open access538.9Local-StructureImplanted SiErbiumFilmsCathodoluminescenceCentersFísica de materiales