Carpio Rodríguez, Ana MaríaDuro, GemaNegreanu Pruna, Mihaela2023-06-172023-06-172017-05Carpio Rodríguez, A. M., Duro, G. y Negreanu Pruna, M. «Constructing Solutions for a Kinetic Model of Angiogenesis in Annular Domains». Applied Mathematical Modelling, vol. 45, mayo de 2017, pp. 303-22. DOI.org (Crossref), https://doi.org/10.1016/j.apm.2016.12.028.0307-904X10.1016/j.apm.2016.12.028https://hdl.handle.net/20.500.14352/18799We present an iterative technique to construct stable solutions for an angiogenesis model set in an annular region. Branching, anastomosis and extension of blood vessel tips is described by an integrodifferential kinetic equation of Fokker-Planck type supplemented with nonlocal boundary conditions and coupled to a diffusion problem with Neumann boundary conditions through the force field created by the tumor induced angiogenic factor and the flux of vessel tips. Convergence proofs exploit balance equations, estimates of velocity decay and compactness results for kinetic operators, combined with gradient estimates of heat kernels for Neumann problems in non convex domains.engConstructing solutions for a kinetic model of angiogenesis in annular domainsjournal articlehttps://doi.org/10.1016/j.apm.2016.12.028https://www.sciencedirect.com/journal/applied-mathematical-modellingopen access519.8AngiogenesisIntegrodifferential modelKinetic-diffusion equationsFokker–Planck operatorBounded domainsNonlocal and Neumann boundary conditionsEcuaciones diferencialesInvestigación operativa (Matemáticas)Sistema cardiovascular1202.07 Ecuaciones en Diferencias1207 Investigación Operativa2411.03 Fisiología Cardiovascular