Matía Hernando, PalomaLuis Aina, Alfredo2023-06-202023-06-202011-12-121050-294710.1103/PhysRevA.84.063829https://hdl.handle.net/20.500.14352/44590©2011 American Physical Society. A. L. acknowledges support from Project No. FIS2008-01267 of the Spanish Direccion General de Investigacion del Ministerio de Ciencia e Innovacion, and from Project QUITEMAD S2009-ESP-1594 of the Consejeria de Educacion de la Comunidad de Madrid.We show that there are nonclassical states with lesser joint fluctuations of phase and number than any classical state. This is rather paradoxical since one would expect classical coherent states to be always of minimum uncertainty. The same result is obtained when we replace phase by a phase-dependent field quadrature. Number and phase uncertainties are assessed using variance and Holevo relation.engNonclassicality in phase-number uncertainty relationsjournal articlehttp://dx.doi.org/10.1103/PhysRevA.84.063829http://journals.aps.org/open access535Analytic representationsWigner functionQuantum-mechanicsUnit discStatesOscillatorFieldsÓptica (Física)2209.19 Óptica Física