Ruiz Cembranos, José AlbertoDobado González, AntonioLópez Maroto, Antonio2023-06-202023-06-202003-11[1] D.N. Spergel et al., Astrophys. J., Suppl. Ser. 148, 175 (2003). [2] V. Barger, J.P. Kneller, H.S. Lee, D. Marfatia, and G. Steigman, Phys. Lett. B 566, 8 (2003); A. Pierce and H. Murayama, hep-ph/0302131; S. Hannestad, J. Cosmol. Astropart. Phys. 05, 004 (2003). [3] N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, Phys. Lett. B 429, 263 (1998); Phys. Rev. D 59, 086004 (1999); I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, Phys. Lett. B 436, 257 (1998). [4] D. Langlois, in Proceedings of YITP Workshop: Braneworld: Dynamics of Space-time Boundary, Kyoto, Japan, 2002, hep-th/0209261. [5] T. Multamaki and I. Vilja, Phys. Lett. B 559, 1 (2003). [6] R. Sundrum, Phys. Rev. D 59, 085009 (1999). [7] A. Dobado and A.L. Maroto, Nucl. Phys. B592, 203 (2001). [8] M. Bando, T. Kugo, T. Noguchi, and K. Yoshioka, Phys. Rev. Lett. 83, 3601 (1999). [9] J. Hewett and M. Spiropulu, Annu. Rev. Nucl. Part. Sci. 52, 397 (2002). [10] P. Creminelli and A. Strumia, Nucl. Phys. B596, 125 (2001). [11] J. Alcaraz, J.A.R. Cembranos, A. Dobado, and A.L. Maroto, Phys. Rev. D 67, 075010 (2003). [12] T. Kugo and K. Yoshioka, Nucl. Phys. B594, 301 (2001). [13] J.A.R. Cembranos, A. Dobado, and A.L. Maroto, Phys. Rev. Lett. 90, 241301 (2003). [14] J.A.R. Cembranos, A. Dobado, and A.L. Maroto, Phys. Rev. D 65, 026005 (2002). [15] A.A. Andrianov, V.A. Andrianov, P. Giacconi, and R. Soldati, J. High Energy Phys. 07, 063 (2003). [16] R. Contino, L. Pilo, R. Rattazzi, and A. Strumia, J. High Energy Phys. 06, 005 (2001). [17] E.W. Kolb and M.S. Turner, The Early Universe (Addison-Wesley, Reading, MA, 1990). [18] M. Srednicki, R. Watkins, and K.A. Olive, Nucl. Phys. B310, 693 (1988); P. Gondolo and G. Gelmini, ibid. B360, 145 (1991). [19] K.N. Abazajian, Astropart. Phys. 19, 303 (2003). [20] R.H. Cyburt, B.D. Fields, and K.A. Olive, Phys. Lett. B 567, 227 (2003). [21] K. Hirata et al., Phys. Rev. Lett. 58, 1490 (1987). [22] R.M. Bionta et al., Phys. Rev. Lett. 58, 1494 (1987).0556-282110.1103/PhysRevD.68.103505https://hdl.handle.net/20.500.14352/50740©2003 The American Physical SocietyWe consider a general brane-world model parametrized by the brane tension scale f and the branon mass M. For a low tension compared to the fundamental gravitational scale, we calculate the relic branon abundance and its contribution to the cosmological dark matter. We compare this result with the current observational limits on the total and hot dark matter energy densities and derive the corresponding bounds on f and M. Using the nucleosynthesis bounds on the number of relativistic species, we also set a limit on the number of light branons in terms of the brane tension. Finally, we estimate the bounds coming from the energy loss rate in supernovae explosions due to massive branon emission.engCosmological and astrophysical limits on brane fluctuationsjournal articlehttp://prd.aps.org/abstract/PRD/v68/i10/e103505http://prd.aps.orgopen access53Goldstone BosonsNeutrino BurstDimensionsWmapMillimeterUniverseFísica (Física)22 Física