Carpio Rodríguez, Ana MaríaBonilla, Luis L.2023-06-202023-06-202008Carpio Rodríguez, A. M. y Bonilla, L. L. «Periodized Discrete Elasticity Models for Defects in Graphene». Physical Review B, vol. 78, n.o 8, agosto de 2008, p. 085406. DOI.org (Crossref), https://doi.org/10.1103/PhysRevB.78.085406.1098-012110.1103/PhysRevB.78.085406https://hdl.handle.net/20.500.14352/49854The cores of edge dislocations, edge dislocation dipoles, and edge dislocation loops in planar graphene have been studied by means of periodized discrete elasticity models. To build these models, we have found a way to discretize linear elasticity on a planar hexagonal lattice using combinations of difference operators that do not symmetrically involve all the neighbors of an atom. At zero temperature, dynamically stable cores of edge dislocations may be heptagon-pentagon pairs (glide dislocations) or octagons (shuffle dislocations) depending on the choice of initial configuration. Possible cores of edge dislocation dipoles are vacancies, pentagon-octagon-pentagon divacancies, Stone-Wales defects, and 7-5-5-7 defects. While symmetric vacancies, divacancies, and 7-5-5-7 defects are dynamically stable, asymmetric vacancies and 5-7-7-5 Stone-Wales defects seem to be unstable.engPeriodized discrete elasticity models for defects in graphenejournal articlehttps://doi.org/10.1103/PhysRevB.78.085406http://arxiv.org/pdf/0805.1220.pdfopen access538.9Carbon nanotubesGraphiteDislocationsCrystalsFísica del estado sólido2211 Física del Estado Sólido