
Accuracy and precision of the estimation of the number of missing levels in chaotic spectra using
long-range correlations

I. Casal,1, ∗ L. Muñoz,1, † and R. A. Molina2, ‡

1Grupo de Fı́sica Nuclear, Departamento de Estructura de la Materia,
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We study the accuracy and precision for estimating the fraction of observed levels ϕ in quantum chaotic
spectra through long-range correlations. We focus on the main statistics where theoretical formulas for the
fraction of missing levels have been derived, the ∆3 of Dyson and Mehta and the power spectrum of the δn
statistic. We use Monte Carlo simulations of the spectra from the diagonalization of Gaussian Orthogonal
Ensemble matrices with a definite number of levels randomly taken out to fit the formulas and calculate the
distribution of the estimators for different sizes of the spectrum and values of ϕ. A proper averaging of the
power spectrum of the δn statistic needs to be performed for avoiding systematic errors in the estimation. Once
the proper averaging is made the estimation of the fraction of observed levels has quite good accuracy for the
two methods even for the lowest dimensions we consider d = 100. However, the precision is generally better
for the estimation using the power spectrum of the δn as compared to the estimation using the ∆3 statistic. This
difference is clearly bigger for larger dimensions. Our results show that a careful analysis of the value of the
fit in view of the ensemble distribution of the estimations is mandatory for understanding its actual significance
and give a realistic error interval.

I. INTRODUCTION

Statistical analysis of spectra has become a very useful tool
in Physics. It already started in the 50-60’s of the past century
in the field of Nuclear Physics when Wigner, Dyson, Gaudin,
Mehta and others developed and applied the Random Matrix
Theory (RMT) to nuclear spectra [1–12]. One of the main
results arrived in 1982 when Haq, Pandey and Bohigas an-
alyzed the spectral fluctuations of an ensemble of 1407 ex-
perimentally identified neutron and proton Jπ = 1/2+ res-
onances just above the one-nucleon emission threshold (the
Nuclear Data Ensemble, NDE) [13]. They showed an impres-
sive agreement with the prediction of the Gaussian Orthogo-
nal Ensemble (GOE) of RMT with very high statistical sig-
nificance. The results are certainly striking considering the
matrix models from RMT are constructed with random num-
bers and the prediction is parameter-free. Two years later, Bo-
higas, Giannoni and Schmit applied RMT to study the spec-
tral fluctuations of a Sinai quantum billiard, whose classical
analogue shows chaotic dynamics, obtaining also a very good
agreement with the GOE [14]. In view of this result, they es-
tablished as a conjecture that the spectral fluctuations of time-
reversal-invariant systems whose classical analogs are chaotic
are the same as those predicted by GOE. Known from then as
the BGS conjecture, it has been supported by many other re-
sults in different physical systems along the years, and it was
finally proved semiclassically by Heusler et al. in 2007 [15].
On the other hand, for quantum systems with an integrable
classical analogue Berry and Tabor showed in 1977 that their
spectral fluctuations are identical to those of a sequence of un-
correlated random numbers and follow Poisson statistics [16].
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Once the classification depending on the underlying dy-
namics of the classical system is made, the way is paved to
extend it to all quantum systems with or without a classical
analogue. Thus, a quantum system is said to be chaotic when
its spectral fluctuations are well described by RMT and it is
said to be regular when they follow Poisson statistics. Spectral
fluctuations of quantum systems are universal as they do not
depend on the particular properties of each system but only on
the more general properties of the dynamics, whether it is reg-
ular or chaotic. However, this universality can only be argued
for the two extremes, systems intermediate between chaos and
regularity lack this universal characterization.

To measure spectral fluctuations in RMT a certain statis-
tic is defined which can be calculated from the sequence of
levels of a quantum spectrum. The statistics are usually di-
vided on whether they measure short range correlations be-
tween neighboring levels like the nearest-neighbor spacing
distribution P (s) and the distribution of ratios between neigh-
boring spacings [11, 17] or long-range correlations between
distant levels like the ∆3 of Dyson and Mehta [10] or the
power spectrum of the δn [18]. In order to compare experi-
mental spectra with RMT results, complete sequences of lev-
els without mixed symmetries are needed. In actual experi-
ments missing levels are sometimes unavoidable, for example,
if the wave function has a node in the location of the antenna
in a microwave billiard experiment the level cannot be mea-
sured. There are then a number of works that have worked out
how the correlations in the spectral fluctuations depend on the
fraction of observed levels for chaotic quantum systems [19–
21]. In general, as the fraction of missing levels increases the
correlations in the spectra diminish and the spectral statistics
become closer to the Poisson case. Assuming the chaoticity
of the quantum system, the fraction of missing levels in the
spectral sequence can be estimated from the spectral statis-
tics. This way of estimating the number of missing levels in
experimental spectra has been succesfully applied for differ-
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ent systems [24, 25]. However, very few attempts have been
made to address the quality of the different estimators and to
make a comparison between them. This is specially relevant
as systems intermediate between regularity and chaos as well
as systems with a superposition of sequences with different
symmetries also present correlations between the RMT result
and Poisson. It is therefore necessary to establish how to cor-
rectly use each statistic for each kind of transition in order to
avoid misleading conclusions on the origin of the intermediate
behavior of a certain system.

The purpose of this work is to contribute to the systematiza-
tion of the correct use of the available statistics to estimate the
fraction of missing levels in spectra. In particular, we focus
on the ∆3 and the P δk statistics, which measure long-range
correlations between levels. For both, there exist theoretical
formulas for the transition as a function of one parameter, the
fraction of observed levels, (ϕ ∈ [0, 1]). However, the the-
oretical ensemble standard deviation has not been calculated
before. The square root of the ensemble standard deviation of
ϕ is a measure of the error in the estimation of ϕ from a fit
to the theoretical formulas and should be as small as possible
[22]. It will depend on the particular statistic used but also
on the value of ϕ and the size of the analyzed level sequence.
This error is very different from the simple numerical error of
a non-linear squares fit and is the relevant one in RMT studies,
as we show in this analysis. In this work we resort to a numer-
ical calculation of the full distribution of ϕ. This will allow us
to study the accuracy, related to the correctness of the theoret-
ical formulas, and the precision, related to ensemble standard
deviation, of the estimation of the fraction observed levels, de-
pending on its value, the size of the spectrum and the method
of calculation.

The paper is organized as follows: In Sec. II we describe
the tools we use for the Montecarlo simulations of RMT spec-
tra with missing levels and the statistics we use for the analysis
of long-range correlations and the estimation of the fraction of
observed levels. In Sec. III we show the main results of the
paper, i.e. the distribution of the estimations of the fraction of
observed levels depending on the different methods used. The
tables and figures of this section summarize the results for the
precision and accuracy of the fit of the fraction of observed
levels depending on the size of the level sequence. In Sec. IV
we summarize the main conclusions of the work.

II. STATISTICAL ANALYSIS OF RMT SPECTRA WITH
MISSING LEVELS

For analyzing the accuracy and precision of the estimation
of the fraction of missing levels we need to construct ensem-
bles of chaotic spectra with different fractions of observed lev-
elsϕ. We describe below the procedure we have used focusing
on GOE spectra.

The GOE is an ensemble of matrices defined in RMT to rep-
resent hamiltonian matrices with time-reversal symmetry and
spin rotation symmetry, that is, the vast majority of physical
hamiltonians. Thus, it is the most used ensemble to compare
with experimental results and perform numerical and theoret-

ical studies. The GOE is composed of real symmetric ma-
trices invariant under orthogonal transformations. The ma-
trix elements are random numbers from Gaussian distributions
and together with the GUE (Gaussian Unitary Ensemble, for
hamiltonians without time-reversal symmetry) and the GSE
(Gaussian Simplectic Ensemble, for hamiltonians with time-
reversal symmetry but no spin rotational symmetry) they con-
stitute the three classical ensembles of RMT.

First of all, we generate a sample of matrices belonging to
the GOE and diagonalize each of them to obtain the spectrum.
We then randomly eliminate the necessary amount of levels
to obtain a spectrum with a determined fraction of observed
levels ϕ.

After that, the first necessary step prior to the statistical
analysis is the so-called unfolding, that is, to separate the spec-
tral fluctuations, which are the object of study, from the secu-
lar behavior of the level density. To perform the unfolding one
needs to assume that the density of states g(E) can be sepa-
rated into a smooth part g(E) and a fluctuating part g̃(E),

g(E) = g(E) + g̃(E) (1)

The standard procedure by which g(E) is removed consists
in mapping the actual energy levels {Ei}i=1,...,d into new di-
mensionless levels {εi}i=1,...,d whose mean level density is
constant. Here d stands for the size of the spectrum. This can
be done by means of the following transformation:

εi = N(Ei), i = 1, . . . , d, (2)

where N(E) is the smooth part of the accumulated level den-
sity N(E) =

∫ E
−∞ dE′g(E′), which gives the number of lev-

els up to energy E. The transformed level density ρ(ε) in the
new energy variable ε is such that ρ(ε) = 1, as required.

A correct unfolding is crucial in order to properly analyze
the spectral fluctuations. Ideally the smooth part of the level
density, that is, the mean level density should be perfectly
known. For physical systems this is not always the case. In
many relevant cases only a very general fit, like a fit to a poly-
nomial function of the energy, can be done. A polynomial fit
is a very illustrative example to understand the consequences
of the possible mistakes which can be made. If the degree of
the polynomial is too low the fit cannot accurately describe
g(E) completely and if it is too high the fit can be too good
in the sense that it would also partially include the fluctua-
tions and not only the smooth part. Both type of errors lead to
misleading conclusions in the spectral analysis [26].

In this work we deal with spectra from the GOE, whose
level density is perfectly known and, moreover, the change
in the level density when there are missing levels is straight-
forward. The mean level density of the GOE is known as
Wigner’s semicircle law and is given by:

ρ(E) =


A
π

√
2d
A − E2 |E| <

√
2d
A

0 |E| >
√

2d
A

(3)

where A is a constant. As the level density represents the
number of energy levels per unit energy, we only need to mul-
tiply by a factor ϕ to have the level density of a spectrum with
a fraction ϕ of observed levels.
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Thus, the mean accumulated level density we use here for
the unfolding is:

N(E) =
ϕ

2

(
A

π

[
E

√
2d

A
− E2

+
2d

A
arcsin

(
E√
2d/A

)]
+ d

)
(4)

Once we have an ensemble of unfolded spectra with a cer-
tain fraction ϕ of observed levels, we can proceed to calculate
the two statistics we focus on: ∆3 and P δk .

The ∆3 is one of the most widely used long-range statistics
and was defined originally by Dyson and Mehta [9, 10]. It is
defined in an interval [ε, ε+ L] of the unfolded spectrum as

∆3(L) =

〈
min
A,B

1

L

∫ ε+L

ε

dε′ [N(ε′)−Aε′ −B]
2

〉
, (5)

where the angle brackets denote the spectral average over the
values of ε, the location of the window of L levels within the
spectrum. The value of ∆3 is independent of the position of
ε and that is why it makes sense to calculate an average over
intervals of length L along the spectrum.

The ∆3 is a measure of the spectral rigidity or of how “or-
dered” is the spectrum in the following sense: The nearer to
an equally spaced spectrum the smaller the value of ∆3 is.
For an exactly equally spaced spectrum it has a constant value
∆3 = 1/12. The opposite is a regular system with Poisson
statistics where there are no correlations between levels and
it grows linearly in this case, ∆3 = L/15. GOE spectra are
more rigid and the growth with L is logarithmic. The result
cannot be computed analytically but it is possible to obtain an
asymptotic expression valid for large L:

∆3(L) =
1

π2

[
log(2πL) + γ − 5

4

]
− 1

8
+O(L−1) (6)

This equation is sufficient for most purposes as the differ-
ence between this asymptotic formula and the numerical result
is negligible for L & 6. The bar over ∆3 denotes average over
the ensemble, as these are the theoretical predictions which
can be supplied by RMT. For the practical calculation of ∆3

we have implemented the prescription described in Ref. [19].
It must be noted that in order to have a meaningful spectral av-
erage it is important to calculate ∆3(L) through independent
intervals of length L in the spectrum. The number of such in-
tervals limits the maximum value of L for which the ∆3(L)
can be calculated [27]. In this work we have chosen to limit
the calculation to L = d/3.5 in order to average over at least
three fully independent intervals.

The P δk statistic is the power spectrum of the δn statistic
which is defined in terms of the unfolded energy levels as

δn = εn+1 − ε1 − n, n = 1, . . . , d− 1 (7)

and it represents the deviation of the excitation energy of the
(n+ 1)th unfolded level from its mean value n. Moreover, if

we appropriately shift the ground state of the system, we can
write

δn = −Ñ(εn+1), (8)

that is, the accumulated level density fluctuations at ε = εn+1.
The δn statistic was regarded in [18] from a new point of

view, considering its formal similarity with a discrete time
series, resulting in a new long-range statistic to characterize
quantum chaos. One of the most common numerical tech-
niques used in time series analysis is the calculation of the
power spectrum, the square modulus of the Fourier transform:

P δk ≡ |δ̂k|2 =
1

N

∣∣∣∣∣
N∑
n=1

δn exp

(−i2πnk
N

)∣∣∣∣∣
2

(9)

The three classical ensembles of RMT (GOE, GUE and
GSE) showed P δk ∝ 1/k, while on the other hand, Pois-
son spectra showed P δk ∝ 1/k2. In view of these results it
was conjectured that chaotic quantum systems are character-
ized by 1/f noise, whereas integrable ones exhibit 1/f2 noise
[18]. The analogy with time series also provides a consistent
interpretation of spectral rigidity in terms of antipersistence.
In a time series, antipersistence means that an increasing or
decreasing trend in the past increases the probability of the
opposite trend in the future. Fluctuations in an unfolded spec-
trum are the deviations from an equally spaced spectrum with
spacings between levels equal to 1. Thus, if the signal δn,
viewed as a time series, is very antipersistent, the correspond-
ing energy spectrum is very rigid. This is the case of RMT
and chaotic spectra.

The P δk statistic has been used to study numerical spec-
tra from theoretical models like RMT ensembles [28–31], the
nuclear shell-model [18], quantum billiards [32], the quartic
oscillator and the kicked top [30] to study the chaotic dy-
namics of quantum models or the order-chaos transition in
mixed systems. Microwave billiards [24, 33], microwave net-
works [34, 35] or molecules [25] are some of the experimental
spectra recently analyzed using P δk to address issues such as
chaoticity, particular non-universal features in the spectra or
missing levels.

For our analysis we use the following expressions of ∆3(L)
[19, 20] and P δk [21] for a GOE spectrum with only a fraction
ϕ of observed levels:

∆3(L;ϕ) =
ϕ2

π2

[
log

(
2πL

ϕ

)
+ γ − 5

4
− π2

8

]
+ (1− ϕ)

L

15
(10)

P δk (ϕ) =
N2ϕ

4π2

[
K(ϕ k

N )− 1

k2
+
K
(
ϕN−kN

)
− 1

(N − k)2

]

+
1

4 sin2
(
πk
N

) − ϕ2

12
(11)

The formula for P δk (ϕ) uses the so-called form factor ap-
proximation that only takes into account correlations between
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levels. The curves are the ensemble average of ensembles of 1500
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randomly taken out leaving a fraction ϕ of observed levels. Results
are compared with the theoretical formula (10).
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FIG. 2. Value of P δk vs. k in logarithmic scale for the same data as
Fig. 1 and comparison with the theoretical formula (11).

two levels. Analytical results for the GUE have recently ob-
tained expressions beyond the form factor approximation that
take into account correlations to all orders [36–38]. Unfortu-
nately, similar analytical formulas for the GOE have not been
obtained yet. The differences are evident only at large values
of k close to the limit d/2. For our purposes, the formulas
coming from the form factor approximation are good enough
for estimating the fraction of observed levels ϕ as we show
below.

The quality of these formulas for describing ensemble av-
erages of chaotic spectra with missing levels has been shown

before [19–21]. However, in order to be self-contained, we
show in Figs. 1 and 2 the curves for several values of ϕ to
compare the behavior of the two statistics as ϕ varies from
the GOE prediction (ϕ = 1) to the Poisson case (ϕ = 0) and
compare with the results of averages over the corresponding
ensembles of 1500 members each for dimension d = 1500 as
a check of the correctness of the theoretical predictions.

Similar formulas have been obtained for another widely
used statistic to study long-range correlations, the Σ2 [20].
The ∆3 is an integrated version of the Σ2 and, thus, much
smoother. Although, the quality of the formulas for the en-
semble average of ∆3 and Σ2 is very similar, the variance
within the ensemble is generally much higher for the Σ2 than
for the ∆3. The latter is, thus, better suited for estimating the
number of missing levels and has been used in past and re-
cent works with this aim [23, 24, 35, 39, 40], and thus our
choice for this paper. For a recent discussion of this issue in a
different context see Ref. [23].

Due to its nature P δk is a highly fluctuating quantity from
a value of k to the next for individual spectra. Moreover, in
its natural logarithmic representation, the number of points is
much larger for large values of log k. This is not an important
caveat when comparing with the GOE results or the Poisson
results. However, when fitting for estimating ϕ a direct least
squares fit of the results is usually biased to give much more
importance to large k values as we have many more points
in that region. This is partially compensated by the fact that
deviations from GOE results tend to be larger in the low k
region but normally the bias is still there. So, when we can-
not perform an ensemble average and to avoid this problem
(and also for representation purposes) an average of P δk over
different values of k is performed. Of course, there are differ-
ent ways to perform this average in the literature which, up to
now, have not been given a particular importance [21, 25]. We
have explored this question in more detail and found that this
process of averaging may induce systematic errors in the es-
timation of ϕ. Our findings are summarized in the Appendix
A. Our final conclusion is that the optimal way of averaging
is done in intervals of k (and not log k as was done in some
previous works) with a number of intervals nint that depends
on the dimension d and the value of ϕ. However, this choice
is not very critical and can be estimated with a simple formula
nint = 0.5 ∗ d0.65 that gives a number that can be safely used
for all values of ϕwhich is important as in practical cases ϕ is,
in principle, unknown. The results using P δk that we present
in the following section are performed with this procedure.

III. RESULTS

In this section we present the results of the estimation of the
fraction ϕ of observed levels in individual spectra from fits to
the equations (10) and (11) for ∆3 and P δk , and the compari-
son of their efficiency in terms of accuracy and precision. We
remind the reader that by accuracy we mean the closeness of
the estimated value to the real value and by precision we refer
to the statistical variability of the estimation. From now on
we will call ϕ∆ the estimation of ϕ obtained from the fit to
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the expression (10) for ∆3, ϕP the estimation of ϕ obtained
from the fit to the expression (11) for P δk , and ϕe the value of
ϕ initially set for the ensemble, to distinguish between them
when necessary.

We have generated ensembles of 1500 GOE spectra for di-
mensions d = 100 to 2500 and values of ϕe from 0.3 to 1.
Then for each ensemble we have proceeded as follows: i) cal-
culate ∆3 and P δk for each individual spectrum ii) perform fits
to Eqs. (10) and (11) to obtain the estimations of ϕ, and iii)
calculate the mean and standard deviation of the 1500 estima-
tions of ϕ from the ensemble for each statistic. Finally we
analyze the precision in terms of the standard deviations and
the accuracy by comparing with the exact value of ϕe which
has been set for each ensemble. The actual distribution of the
results of the estimation is different from a Gaussian, in part
due to the fact that the value of ϕ is bounded between 0 and 1.
Nevertheless, the value of the standard deviation still is a good
measure of the precision of the method used. However, for a
full understanding of the meaning of the result an analysis of
the full distribution of the estimated values of ϕ is needed.
Some examples will be provided after discussing the results
for the mean and standard deviation.

A. Results for spectra of dimension d = 2500

In Table I we show the results of the mean µ and standard
deviation σ of the estimations of ϕ for each statistic in this
ensemble. For the fits with the ∆3(L) we use values of L up
to L = d/3.5. We have checked that the results do not depend
very much on the chosen limit as long as there are enough
points to make a proper fit. We choose a number of intervals in
the k-axis of 80 for the fits with the P δk . It can be seen that the
accuracy is quite good for the ensemble of estimations and for
both statistics. The mean values are very close to the values of
ϕe for the corresponding ensemble, always within one sigma.
The precision, as measured by σ/µ, lowers as the fraction of
observed levels decrease, as one would expect. However, in
this quantity there are significant differences between ∆3 and
P δk . While in the former case the precision goes from 1.4%
for ϕe = 0.95 to about 52% for ϕe = 0.3, in the later case the
precision goes from 1% to 12%. We can then conclude that
for this large dimensions a fit to the formula for the P δk gives
better results for the estimation of experimental spectra.

In Figs. 3 and 4 we show the distribution of estimations
ϕP and ϕ∆ for the ensemble with ϕe = 0.9 and ϕe = 0.5.
Together with the histograms we have represented Gaussian
curves with the corresponding parameters µ and σ obtained
for the ensemble from Table I. The distributions have a rea-
sonably Gaussian shape and the standard deviations can be
used for estimating the dispersion of values of ϕ, although the
full distribution is needed for a correct interpretation of the
fitting results. This is particularly evident in the case of the
distribution of the results for the fitting with ∆3. The compar-
ison of the normalized distribution of the estimation for the
two different statistics clearly supports the choice of the fits
of P δk for the estimation of ϕ for this dimension. This differ-
ence diminishes for lower dimensions, as we will see in the

TABLE I. Results of the average and standard deviation of the fits
for ϕ (µ and σ) for a GOE ensemble of 1500 matrices of dimension
d = 2500. The fits using P δk were obtained with 80 intervals in the
k axis while the fits using ∆3 were obtained with the results up to a
maximum value of L of d/3.5.

P δk ∆3

ϕ µ σ µ σ

0.3 0.311 0.037 0.33 0.17
0.5 0.507 0.031 0.52 0.12
0.6 0.603 0.027 0.618 0.094
0.7 0.698 0.022 0.719 0.070

0.75 0.746 0.019 0.764 0.059
0.8 0.792 0.018 0.809 0.046

0.85 0.839 0.016 0.856 0.035
0.9 0.887 0.013 0.905 0.025

0.95 0.935 0.010 0.952 0.013

next section with d = 200.
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FIG. 3. Distribution of the estimations ϕ∆ for an ensemble of 1500
GOE matrices of dimension d = 2500 with ϕe = 0.9 (left) and
ϕe = 0.5 (right). Notice that the axis are different between the
figures. The solid red line is the best fit to a Gaussian distribution
with the parameters shown in the figure.

B. Ensembles of GOE spectra of dimension d = 200

In Table II we show the results of the mean µ and standard
deviation σ of the estimations of ϕ for each statistic in this
ensemble, that is, the same as in Table I for d = 2500. By
comparing both we can observe the same general trends: the
mean values µ±σ are compatible with the values of ϕe for the
corresponding ensemble, though the precision (σ/µ) is lower
as the fraction of observed levels decrease. Here as well there
are no significant differences between the estimations with ∆3

and with P δk dealing with accuracy. There are still differences
dealing with precision and better results for the estimations
with P δk are observed in the case of smaller ϕ although the
differences are smaller than in the case of d = 2500. Another
difference of Table II with respect to Table I is the general
increase in the standard deviations, as expected when the di-
mension decreases. For a graphical comparison we show in
Figs. 5 and 6 the distribution of estimations ϕP and ϕ∆ for
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FIG. 4. Distribution of the estimation of ϕP for the same ensembles
as the previous figure. The solid red line is the best fit to a Gaussian
distribution with the parameters shown in the figure. The x-axis are
the same as in Fig. 3 but not the y-axis.

TABLE II. Results of the average and standard deviation of the fits
for ϕ (µ and σ) for a GOE ensemble of 1500 matrices of dimension
d = 200. The fits using P δk were obtained with 18 intervals in the
k axis while the fits using ∆3 were obtained with the results up to a
maximum value of L of d/3.5.

P δk ∆3

ϕ µ σ µ σ

0.3 0.34 0.13 0.32 0.20
0.5 0.53 0.10 0.53 0.14
0.6 0.623 0.089 0.62 0.12
0.7 0.700 0.081 0.714 0.086

0.75 0.753 0.068 0.764 0.082
0.8 0.804 0.060 0.808 0.068

0.85 0.844 0.054 0.858 0.056
0.9 0.889 0.045 0.908 0.041

0.95 0.931 0.035 0.951 0.039

the ensemble with ϕe = 0.9 and ϕe = 0.5, that is, the same as
in Figs. 3 and 4 for d = 2500. It can be seen as the distribu-
tions are more extended in this case and the shape differs more
from Gaussian, specially in the case of the fitting with ∆3.

3

6

9

0 0.2 0.4 0.6 0.8 1

µ = 0.908
σ = 0.041

N
or

m
al

iz
ed

D
is

tr
ib

ut
io

n

ϕ

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.2 0.4 0.6 0.8 1

µ = 0.53
σ = 0.14

N
or

m
al

iz
ed

di
st

ri
bu

ti
on

ϕ

FIG. 5. Distribution of the estimations ϕ∆ for an ensemble of 1500
GOE matrices of dimension d = 200 with ϕe = 0.9 (left) and ϕe =
0.5 (right). Notice that the axis are different between the figures.
The solid red line is the best fit to a Gaussian distribution with the
parameters shown in the figure.

Thus, in view of Table II, the main conclusion of the com-
parison between the estimations ϕP and ϕ∆ changes for this

3

9

0 0.2 0.4 0.6 0.8 1

µ = 0.889
σ = 0.045

N
or

m
al

iz
ed

di
st

ri
bu

ti
on

ϕ

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 0.2 0.4 0.6 0.8 1

µ = 0.53
σ = 0.10

N
or

m
al

iz
ed

di
st

ri
bu

ti
on

ϕ

FIG. 6. Distribution of the estimation of ϕP for the same ensembles
as the previous figure. The solid red line is the best fit to a Gaussian
distribution with the parameters shown in the figure. The x-axis are
the same as in Fig. 5 but not the y-axis.

lower dimension: accuracy and precision are similar when us-
ing ∆3 or P δk for larger values of ϕ although P δk is still much
better for smaller values. In Appendix B we also show results
for an intermediate value d = 1000 confirming this trend.

Now, in the next section we would like to give some guid-
ance on how to proceed to obtain the best range estimation of
ϕ for a given single spectrum.

C. A single spectrum: How to proceed

First, a completion of the results presented in the previous
sections for a high and a low dimension is in order. We have
perform analyses of ensembles of several dimensions and we
found no significant differences in accuracy between P δk and
∆3 but we found differences in precision. In Fig. 7 we show
the evolution of the standard deviation of the ensemble distri-
butions of ϕ values for P δk and ∆3 for ϕe = 0.3, 0.6 and 0.9.
It can be seen that, except for the lowest dimensions, the pre-
cision of the fit with P δk is better and the difference is bigger as
the fraction of observed levels decrease. We remind that good
precision means that the probability to obtain a value of ϕ for
the single spectrum of study (a single member of the ensem-
ble) belongs to a narrow interval around the average value.

Now, when performing a fit with any of the two statistics,
we can give the first conservative range estimation by check-
ing to which of the ensembles our fitted value of ϕ could be-
long in the tables I (d = 2500), V (d = 1000) and II (d = 200)
for a dimension similar to that of the spectrum of study (or
making our own by a GOE Monte Carlo calculation like we
described earlier). But the best range estimation of ϕ should
be obtained by calculating the ensembles of spectra of the ex-
act dimension for numerically obtaining the full joint distri-
bution of the fitted ϕ and the actual ϕe. From that numerical
calculation we should obtain the conditional probability dis-
tribution given our result for the fitted ϕ, and the best range
estimation from the standard deviation of this distribution.

So, although both statistics give meaningful results, we rec-
ommend to rely on P δk specially for higher dimensions. More-
over, we also believe calculating P δk is more ”friendly” to the
non-practitioner. Although, when we use P δk , we have to take
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into account that we have to choose the optimal number of
intervals nint to perform the average in intervals of k, spe-
cially when ensemble averaging is not possible because of the
small size of the spectrum. As explained in the Appendix A,
we only have to use a simple rule to obtain safe results, that is,
performing the average dividing in nint intervals the range [k],
with nint = 0.5 ∗ d0.65. Though the optimal nint in principle
depends both on the dimension and the value of ϕ, a further
refinement of nint taking this into account would not produce
such significant improvement to make worth the calculation
of new ensembles, as the choice of nint is robust against am-
ple variations, as explained in the Appendix. The formula for
nint can be safely used when ϕ is completely unknown, and
when we have some hint about its value then the exponent can
be chosen nearer to 0.6 for lower values of ϕ and nearer to 0.7
for higher values of ϕ.
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FIG. 7. Value of the standard deviation of the ensemble distributions
of the estimations of ϕ versus the dimension of the spectrum. Circles
correspond to ϕe = 0.3, squares to ϕe = 0.6 and diamonds to
ϕe = 0.9. Empty symbols correspond to the estimations with ∆3

and filled symbols to the estimations with P δk

IV. CONCLUSIONS

In order to use RMT for estimating properties of chaotic
experimental spectra it is imperative to understand the preci-
sion and accuracy of the statistics and the fitting procedure of
choice as a function of the size of the spectra and other prop-
erties of the system. We have done a systematic analysis of
the methods for estimating the fraction of observed levels ϕ
in chaotic spectra based on the analysis of long-range spectral
correlations. In particular, we have studied the methods using
the power spectrum of the δn statistic P δk and the ∆3 of Dyson
and Mehta. To analyze the methods we have prepared ensem-
bles of GOE spectra taken out randomly a definite number of
levels so ϕ is known.

Both statistics give reasonable results, the accuracy of the
estimations being similar and quite good even for relatively
short sequences with many missing levels. Accuracy and pre-
cision are better, as expected, for larger sequences and larger
values of ϕ. Our method of choice, however, would be to use
P δk as its precision is better, being the dispersion of the results
smaller, specially for larger sequences. We remind that better
precision for the result of the ensemble (lower standard devi-
ations from the correct ϕ) implies less error in the estimation
of the value of ϕ from the fit to a single spectrum of interest,
as the value of ϕ for any member of the ensemble would have
more probability to lie in a narrow range of values around the
correct one.

Moreover, in our opinion P δk is more friendly and easier to
interpret to scientists without experience in statistical analysis
of spectra. It is based on a simple Fourier transform instead of
being a particular definition in this field like the more complex
∆3. The caveat of using P δk is that, when ensemble averages
are not possible because of the small size of the spectrum,
some extra averaging is needed for an unbiased estimation, but
we have found a very simple rule which guarantees the safest
results, that is, performing the average inside nint intervals of
the range [k], with nint given by formula A2.

We have concentrated on the case where missing levels are
missing randomly, for example, if the physical reason behind
the missed observation of the levels is related to the nodal dis-
tribution of the wave functions. Similar Monte Carlo calcu-
lations can be used for making estimations of the number of
missing levels when there are some correlations between the
unobserved levels, for example, if the levels may be missed
because near levels are not resolved experimentally as recent
work have shown [24].

We hope this work will contribute to the systematization of
the use of long-range correlations for estimating the number
of missing levels in experimental chaotic spectra, for quantum
or wave systems. Without this type of analysis the statistical
significance of any estimation based on the fit to a theoretical
formula is unknown.

Appendix A: Method of calculation of P δk

The calculation of P δk is straightforward, being a discrete
Fourier transform of the function δn defined by Eq. (7). As
seen in Fig. 2 when calculating P δk averaged over an ensemble
one obtains sets of points which present a smooth behavior.
When calculating P δk for a single spectrum the result is not so
smooth, so there is the need to smoothen it in some way to be
able to see the trend more clearly, specially in cases like the
one we approach in this work when we have to fit the formula
to a set of points in order to estimate the fraction of observed
levels ϕ.

When the spectrum of interest is reasonably large it is usual
to divide it in several sequences and then perform averages ex-
actly as for an ensemble of spectra. When this is not possible
there is still another usual method which consists in dividing
the x axis, that is, the range of frequencies k, into several inter-
vals with a fixed length and represent only one point with the
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TABLE III. Ensemble of 1500 GOE matrices of dimension d = 200.
Comparison of results for µ and σ with 10 intervals averaged on
log k (the best result in this case) and 18 intervals averaged on k.

P δk average on log k P δk average on k
ϕ µ σ µ σ

0.3 0.45 0.20 0.34 0.13
0.5 0.63 0.15 0.53 0.10
0.6 0.71 0.13 0.623 0.089
0.7 0.79 0.10 0.700 0.081
0.75 0.832 0.090 0.753 0.068
0.8 0.872 0.074 0.804 0.060
0.85 0.910 0.067 0.844 0.054
0.9 0.953 0.051 0.889 0.045
0.95 0.964 0.024 0.931 0.035

mean value for each interval. This can be done before or after
taking the logarithm of the frequency, that is, we can divide
the range [k] or the range [log k]. In this Appendix we present
a comparison of both methods and, in view of the analysis and
conclusions, we have selected the optimal method which we
use for the results presented in the paper.

When possible, the optimal average to smooth the results
is a two-fold one, that is, divide the spectrum in several se-
quences and perform a first average and then divide the re-
sult in several intervals and perform the second average as
described. Here we analyze only the second method as the
spectra of interest are typically small and we use spectra of
dimension d = 200. In Table III we show for comparison the
fitting results for averaging in the range [k] and in the range
[log k], choosing the optimal value for the number of intervals
in both cases. It can clearly be seen accuracy an precision are
much better when averaging in the range [k]. We have also
seen these trends in the rest of the cases of different dimen-
sions analyzed, that is, an overestimation of the value of ϕ
and an increase in the values of σ when averaging in the range
[log k]. Only for ϕe = 0.95 the results are better for aver-
aging in the range of [log k], although in this case the results
are actually very far from Gaussians and the fit in many cases
results in ϕ = 1.

We have also analyzed the fitting results depending on the
number of intervals nint and the dimension. For each dimen-
sion and each value of ϕe of the ensembles generated we have
perform the calculations to obtain the distributions of values
of ϕ using different numbers of intervals and calculating the
systematic error |µ − ϕe| in each case. We call the optimal
nint the one which minimizes this error. We have seen that
using a large number of intervals or a small number of inter-
vals produces systematic deviations in the fitting of ϕ as the
weight of the large and low k sections in the least squares pro-
cedures varies. Except for ϕ < 0.5 there is a wide optimal
number of intervals which is plotted in Fig. 8 for different di-
mensions. The shaded area represents the number of intervals
where there is less than 0.05 of systematic error in the average
estimation of ϕ. In Fig. 8 it can also be seen that the depen-
dence of nint on the value of ϕ is neither very critical, being
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FIG. 8. Optimal number of intervals for fitting ϕ using P δk versus ϕ
for different values of the dimension. The transparent shaded areas
encompass all the values of nint for which the systematic error in the
average estimation of ϕ is less than 0.05. That of d = 2500 reaches
values above 400 for the highest values of ϕ, but the y axis has been
set up to 150 to see the three cases more clearly.

also a wide optimal range of nint common to all the ϕ values.
For example, for d = 200 we have chosen nint = 18 as the
optimal number of intervals common to all the values of ϕ.
But in order to better see this dependence we have also repre-
sented nint versus the dimension for three different values of
ϕ in Fig. 9. We have found a simple functional form which
describes the dependence very well:

nint = a(ϕ) ∗ db(ϕ) (A1)

where the parameters a and b in principle depend on the value
of ϕ, but again in this figure we can clearly see that this de-
pendence is not very critical as the choice is robust against
ample variations: inside the shaded area the error in the aver-
age estimation of ϕ is less than 0.05. Thus, if ϕ is completely
unknown one could safely choose the expression:

nint = 0.5 ∗ d 0.65 (A2)

represented by the black solid line in the figure. It can be seen
that we would have obtained good results with this choice if ϕ
would have been completely unknown as the black solid line
is inside all the shaded areas. The fitting parameters for the
three values of ϕ are shown in Table IV. When we have some
hint about the estimation of ϕ then we would choose a value
for the parameter b nearer to 0.6 for lower ϕ or nearer to 0.7
for higher ϕ.

To summarize this systematic study on the average to be
performed to obtain the best estimation of ϕ from the fit to
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ϕ a b

0.3 0.61 0.61
0.6 0.55 0.64
0.9 0.51 0.70

TABLE IV. Fitting parameters a and b in Eq. A1 for several values
of ϕ

P δk , we found essentially two rules: 1) Divide in a number of
intervals the range [k] (and not the range [log k]) 2) Choose
the number of intervals nint according to formula A2.

Appendix B: Spectra of dimension d = 1000

We show in this section a table with the results for inter-
mediate dimension d = 1000, Table V, in agreement with the
trend explained in the main text.

TABLE V. Results of the average and standard deviation of the fits
for ϕ (µ and σ) for a GOE ensemble of 1500 matrices of dimension
d = 1000. The fits using P δk were obtained with 50 intervals in the
k axis while the fits using ∆3 were obtained with the results up to a
maximum value of L of d/3.5.

P δk ∆3

ϕ µ σ µ σ

0.3 0.329 0.058 0.33 0.18
0.5 0.521 0.048 0.52 0.12
0.6 0.613 0.043 0.620 0.097
0.7 0.705 0.034 0.717 0.075

0.75 0.751 0.031 0.761 0.065
0.8 0.798 0.028 0.809 0.052

0.85 0.845 0.023 0.857 0.040
0.9 0.890 0.019 0.904 0.028

0.95 0.937 0.014 0.952 0.016
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