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Abstract

We propose a category of bundles in order to perform Lagrangian
reduction by stages in covariant Field Theory. This category plays an
analogous role to Lagrange-Poincaré bundles in Lagrangian reduction by
stages in Mechanics and includes both jet bundles and reduced covariant
configuration spaces. Furthermore, we analyze the resulting reconstruc-
tion condition and formulate the Noether theorem in this context. Finally,
a model of a molecular strand with rotors is seen as an application of this
theoretical frame.
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1 Introduction

Symmetry represents the core of many (and probably the most important) tools
developed to tackle dynamical systems. In particular, since the geometric for-
mulation of Mechanics (for example, Arnold [2], Marsden [1], Moser [20] and the
references therein among other), special attention has been always given to those
systems endowed with a group of symmetries. When the system is modelled on
a manifold as the configuration space, the symmetry is expressed in terms of
smooth actions of Lie groups. One natural procedure is thus the construction
of the quotient of the manifold by the group in the case of actions satisfying
certain good properties. This is the so-called reduction procedure, which can be
performed both in the Lagrangian and in the Hamiltonian geometric pictures
of systems and that has attired and still attires the attention of many papers
and books (a good reference of the, can be [18]). With the word system we can
include the evolution of particles governed by variational principles, symplectic
forms or Poisson brackets, or time evolution of sections of bundles (of which
Mechanics is a particular case) in a variational or multisymplectic approach. In
full generality, systems describing section of bundles with no-prescribed time
evolution (for example, covariant fields on space-times or geometric theories as
harmonic maps) are also included in this versatile panorama.



Restricting ourselves to the Lagrangian or variational case, the Lagrangian
functions are defined in the phase space of the system, a manifold including in-
dependent variables (as positions) together with their derivatives. The tangent
bundle is the paradigmatic example in the case of Mechanics, which is general-
ized to jet spaces for Field Theories [15]. The constructions of the variations,
the variational principle and the equations for critical solutions is perfectly de-
scribed in terms of geometric objects. In parallel, when reduction is performed,
the new variations, the new variational principle as well as the new equations
are now written in the reduced phase spaces that is not a tangent or jet space.
This is the so-called Lagrange-Poincaré reduction first introduced in Mechanics
(see [9] for a historical account) and generalized for arbitrary bundles in [8] and
[12]. An important consequence of the new nature of the reduced phase space
arises when one needs to concatenate consecutive reductions. Indeed, there are
many situations where the symmetry group is split in two or more parts of com-
pletely different properties. This difference may require a separate reduction
for each part, a procedure called reduction by stages. The work of Cendra,
Marsden and Ratiu [9] gave the convenient setting for this recursive reductions
scheme that has been extensively used in the literature (just to mention some,
the reader can go to [1], [10], [13], [14], [16]). For that, a new category of phase
spaces is introduced: the Lagrange-Poincaré category in Mechanics. See also [3]
for the complete description of this category that closes some of the issues left
open in [9].

The goal of this work is the construction of the Lagrange-Poincaré category
for Field Theories. This includes the definition of the new phase manifolds, the
variations, the variational principle and the equations for the critical sections
of the configuration bundles. As we already learned from Lagrange-Poincaré
reduction, these equations are split into two groups known as horizontal and
vertical equations. Everything fits in a reduction program so that the reduced
objects and principles by the action of a groups remain in the category and
hence they can be object of repetitive reductions. This new category includes
the Lagrange-Poincaré category in Mechanics as a particular case. The structure
of the paper is as follows. In section 2 we provide the required preliminaries.
This section also recalls the Lagrange-Poncaré category in Mechanics. In section
3, the Lagrange-Poincaré reduction principle for Field Theories is reviewed. In
sections 4 and 5, the construction of the Lagrange-Poincaré category for Field
Theories is introduced together with the detailed description of the variational
principle and equations. As we mentioned before, all this follows the spirit and
generalizes the particular case of Mechanics but, interestingly, this particulariza-
tion can be pushed back and some properties of the general case can be directly
derived from Mechanic as we show below. Section 6 analyzes and confirms the
correct behavior of the theory when successive reductions are performed. Sec-
tion 7 studies the reconstruction process from solution of the variational problem
after reduction, to solutions of the unreduced problem. One gets the charac-
teristic trait in Field Theories that one does not find in the Lagrange-Poincaré
category in Mechanics: a compatibility condition (that is always satisfied in
local neighborhoods) is needed to perform the reconstructions. This is already



present since the first works on reduction for Field theories (see [7], [8]) and
continues in more recent works (see [5], [12], [6]). As usual in these papers we
describe it as the vanishing of the curvature of certain connection. If one thing
can be intrinsically attached with the notion of symmetry is that of Noether
current. In section 8 we explore this object in the new category and analyze
its conservation. In fact, it is proved that the Noether current is not conserved
in general, but it satisfies a specific drift law. The interesting property of this
law is that is makes part of the vertical equation when reduction is performed.
Roughly speaking, reductions make the vertical equation involve more and more
variables (and hence, the horizontal equations become smaller and smaller) by
adjoining the successive Noether drift laws to them.

We complete the work in section 9 with an example. One paradigmatic
instance of reduction by stages in Mechanics is the rigid body with rotors. Here
we analyze the geometric setting describing a molecular strand composed by a
chain of rigid bodies (as it is done in [11]) such that each body have one or more
rotors. This could be regarded as a model of linked molecules with a rotating
side chain(s). Simple proteins of aminoacids could fit in this context. Future
work will include further applications of the theory to other models which can be
inspired by the numerous applications of the reduction by stages in Mechanics
or can be taken from new systems of purely covariant nature.

2 Preliminaries

2.1 Principal bundles.

Let G be a Lie group acting freely and properly on the left on a manifold
Q. Then, the quotient Q/G is also a manifold and the projection 7g,q o :
@ — Q/G is a principal G-bundle. We recall that a principal connection A on
Q — Q/G is a 1-form on @ taking values on g, the Lie algebra of G, such that
A(@?) =¢, forany £ € g, g € Q, and p; A = Adg0.A, where p, : Q — Q denotes
the action by g € G and

d
ng = i o exp(t§) - q € T,Q.

Such a principal connection splits the tangent space as T,Q = H,Q & V,Q, for
all ¢ € @, where

VeQ =kerTymq c.q = {v € T,Q|Tymq/c,q(v) = 0}, q€Q,
H,Q =ker Ay = {v € T,Q|A4(v) =0}, q€Q,

are respectively called wvertical and horizontal subspace. In fact, H,Q) is iso-
morphic to T,(Q/G), * = 7q;a,(q), through Tymo,q,o. The inverse of this
isomorphisms is called horizontal lift and is denoted by Hor?. The curvature of
a connection A is the g-valued 2-form

B(v,w) = dA(Hor(v), Hor(w)),



where v, w € T,Q and Hor(v) is the projection of v € T,Q to H,Q.

The adjoint bundle to Q@ — Q/G is the associated bundle (Q X g)/G by the
adjoint action of G on g. We shall denote it by AdQ — Q/G and its elements
by [¢,€]a, ¢ € Q, £ € g. Remarkably, AdQ — @/G is a Lie algebra bundle since
it is a vector bundle equipped with a fiberwise Lie bracket given by

llg; &1as (g, §2]6] = (4, €1, &2lla, [0,61]c, [0, &ele € AdQw, ©=7mg)6,0(q)-

The principal connection A on @ — @Q/G defines a linear connection on the
vector bundle AdQ — Q/G, denoted V4 and given by the covariant derivative
along curves

Dlg(®),§(t))e

DG (g0, €00) - [AG(0),€0)]

o
In addition, the curvature of A can be seen as a 2-form on /G with values in
the adjoint bundle as for any X,Y € T,(Q/G)

B(X,Y) = (g, B(Hor;' X, Hor}'Y)] .
The connection A induces a well-known vector bundle isomorphism
apr:TQ/G — T(Q/G)® AdQ (1)
e = Tamgie.(ve) @ 4, Alvg)la

used in Mechanics to reduce G-invariant Lagrangians defined on T'Q). This kind
of reduction is called Lagrange—Poincaré reduction and it is described below.

2.2 Quotient of vector bundles.

Given a vector bundle V' — @, we say that an action p of a Lie group G on
V' is a vector bundle action if for all g € G, py : V — V are vector bundle
isomorphisms and the action induced on @ is free and proper. Then, there is a
vector bundle structure on V/G — @ /G with operations

[Vl + [wgla = [vg + w4l and A[vgle = [Mvg]a,

where [v4]a, [wg]la € V/G stand for the equivalence classes of v, wy € V, and
A € R. In the diagram

TV/G,V

V/G

Vv
lﬂQ,v l”Q/G,V/G

TQ/G,Q

Q—Q/G

7Q,v and Tg,q v/ are projections of vector bundles, 7g /¢, ¢ is the projection of
a G-principal bundle and 7y, v is a surjective vector bundle homomorphism.



Suppose that V' — @ has an affine connection V or, equivalently, a covariant
derivative Du(t)/Dt of curves v(t) in V. Let ¢(t) be a curve in @ and denote
go = q(to) a fixed value of the curve, the horizontal lift of ¢(t) through v € V;, at
to is an horizontal curve in V' (that is, its covariant derivative vanishes) denoted
q"(t) such that 7g v o ¢ = ¢ and ¢"*(ty) = v.

Let v(t) beacurvein V, q(t) = mq,v (v(t)), o = q(to) and x(t) = mo,q,q(q(t)).
If g (¢) is the horizontal lift in @ of z(t) with respect to A, we define the gg, (¢)
in G such that

q(t) = gqo (£)gn ().
Consider the curve v (t) = g (t)v(t) in V, then

D D D D
b=7; ton(t) = 52 tyon (to) + —- to)vn (¢

Dt t:tov( ) Dt t:toqu( )Uh( ) Dt t:toqu( )'Uh( 0) + Di t:toqu( O)Uh( )
= t)u(t — t) = a. (ta)Y t

Dt t:toqu( )'U( O) + Di t:to’Uh( ) gqo( O)U(to) + Di t:tovh( )

Thus, the covariant derivative Dv(t)/Dt at to can be decomposed in horizontal
and vertical components

DAH) D DAY)
Dt t:tov ) Dt t:tovh( )7 Dt t:tov( ) qu( O)U(tO)
Consequently, given X € X(Q) and v € I'(Q, V) we can define
(AH) DWAV)
(AH) D (AV)
VX U(qo) Dt t:tov( )7 VX U(qo) Dt t:tov( )7 ( )

where v(t) = v(g(t)) and ¢(t) is an integral curve of X in @ such that go = ¢(to).

Let X =Y @€ € X(Q/G) @ I'(AdQ) ~ I'(TQ/G), using the identification
(1). There is a unique G-invariant vector field X € I'“(T'Q) on Q projecting
to X. Furthermore, X = Y" @ W with Y" € X(T'Q) the horizontal lift of YV’
and W the unique vertical G-invariant vector field such that for all x € Q/G,
&(z) = [q, AW (q))]e with ¢ € 7@}0)@(96). Then, for [v]g € T(Q/G,V/G) with

v € I'%(Q, V) a G-invariant section, we define the quotient connection by

VO] ueltle = [Vxtlo,

the horizontal quotient connection is defined by

AH _ _ rgAH)
[V( )} Gvei [vle = [Vynvle = [Vi " vle
and the vertical quotient connection is defined by
V(.A,V):| = [V — \%4
V4] bl = Vwele = [,

where ¢ satisfies £ = [7g1(v), &]g. Note that these are not connections in the
usual sense as derivation is performed with respect to sections of TQ/G instead
of sections of T(Q/G). Only the horizontal quotient connection can be thought
as a usual connection since it only depends on T(Q/G) C TQ/G.



2.3 The £ category.

In Lagrange—Poincaré reduction the original Lagrangian L is defined on T'Q), the
tangent bundle of the configuration space ). However, the reduced Lagrangian
is defined on TQ/G = T(Q/G) ® AdQ which needs not be a tangent bundle.
To iterate Lagrange—Poincaré reduction, the category £ of Lagrange—Poincaré
bundles was introduced in [9]. Of course, this category, includes TQ/G and is
stable under reduction.

The objects of &P are vector bundles T7Q & V — @ where TQ — Q is
the tangent bundle of a manifold @, and V' — @ is a vector bundle with the
following additional structure:

1. a Lie bracket [,] in the fibers of V;
2. a V-valued 2-form w on Q;
3. a linear connection V on V;

4. and the bilineal operator defined by
(X1 @wi, Xo@ws] = [X1, Xo] @ (Vx, w2 — Vx, w1 —w(X1, X2) + [wr, wa)),

where [X7, X5] denotes the Lie bracket of vector fields and [wy, ws] denotes
the Lie bracket in the fibers of V', is a Lie bracket on sections X & w €
NTrQeVv).

We shall not detail the morphisms of £ in this paper, instead they can be
found in [9]. Given a Lagrangian L : TQ ®V — R defined on al element of £33,
a curve §(t) @ v(t) : [to,t1] = TQ & V is said to be critical if and only if

0= —

2 [ tamema

to

e=0

where ¢.(t) Dv.(t) is a variation of ¢(t) ®v(¢) such that d¢ is the lifted variation
of a free variation dq and

Dw .

5U = + [Uu ’U}] + Wq(éq, q)7

dt
where w(t) is a curve in V' with w(ty) = w(t1) = 0 and mg,v (w(t)) = ¢(¢). This
variational principle for Lagrangians is equivalent to the Lagrange—Poincaré
equations

oL D SL oL .
5_q_ﬁ(5_q_<%’wq(q">>’ (3)
LOL _ D SL

ad, == 5 50 (4)

where ad™ stands for the coadjoint action in V* — Q.



2.4 Reduction of £J3 bundles.

Reduction in the Lagrange-Poincaré category is as follows:

Proposition 1 [9, §6.2] Let TQ ®V — Q be an object of LB with additional
structure [,], w and V. Let p: G x (TQ ®V) = TQ &V be a free and proper
action in the category &P (for all g € G, pgy is an isomorphism in £B) and A
a principal connection on Q@ — Q/G. Then, the vector bundle

T(Q/G)® AdQ & (V/G)

with additional structures [,]?, w® and V? in AdQ @ (V/G) given by

><(nx

V& (€@ o) =ViEe (V4o xlule - Wla(X,9).
W8(X1, X2) =B(X1, X2) @ [W]a (X1, X2),
(€1 @ [vi]a, & @ [va]6)® =[€1, &) & ([V(A’V)]G,él [v2]G

— [V Vg g lorle - Wla (6, &) + [vie: [valela)

is an object of the LB category called the reduced bundle with respect to the
group G and the connection A.

Suppose that L : TQ &V — R is G-invariant. Taking into account the identifi-
cation (1) we can drop L to a reduced Lagrangian

T(Q/G)® AdQ @ (V/G) — R.

Denote by m¢ the projection of TQ &V — (TQ @ V) /G and O&Q@V the identi-
fication between (TQ & V)/G and T(Q/G) & AdQ & (V/G). A curve ¢(t) & v(t)
is critical for the variational problem set by L if and only if the curve

() ® £(t) ® ]a(t) = a*® oma(d(t) @ v(t),

is critical for the variational problem set by I (see [3]). Equivalently, ¢(¢) @
v(t) solves the Lagrange-Poincaré equations given by L in TQ @ V if and only
if 2(t) ® £(t) @ [v]a(t) solves the Lagrange Poincaré equations given by [ in
T(Q/G) ® AdQ & (V/G). Hence, reduction can be made in this category and
the procedure can be iterated: if we reduce by NV, a normal subgroup of G and
afterward by K = G/N, the final result is equivalent to a direct reduction by
G, whenever the auxiliary connections used along the process are conveniently
chosen.

3 Lagrange—Poincaré field equations

Let mx p : P — X be a (non-necessarily principal) fiber bundle. Two local
sections p: U — P and p’ : U’ — P represent the same 1-jet, jlp at x € UNU’



if and only if p(z) = p/(z) and T,p = T,.p’. This defines an equivalence relation
and we denote by J! P the space of such classes. The 1-jet bundle is the space
J'P = UzexJLP equipped with a natural smooth structure of fiber bundle
over P with projection jlp € J'P + p(x) € P. The bundle J!P — P is affine
and modeled over the vector bundle T*X ®p V P, where the abuse of notation
T*X =7 pT™ X has been used.

A first order Lagrangian density is a smooth fiber map £ : J'P — \"T*X,
where n = dim(X). Suppose that X is oriented and Vol € T'(A"T*X) is a
volume form, then the function L : J'P — R such that £ = LVol is called
a Lagrangian. A section p of P — X is a critical section for the variatonal
problem defined by £ = LVol if

/ ‘C(jlps) =0
e=0JX

d
de

for all compactly supported variations p. of p that are vertical, that is for all

xv € X, dp.(v)/de|lc=0 € V,(z)P. This variational principle is equivalent to the

fact that p(x) satisfies the Euler-Lagrange equations, which can be written in

an implicit way as

0L _ giy? 6,L =0,

ép 6jtp
where 6L/5j1p € TX ® V P* is the fiber derivative in JP, div? is defined for
V P*-valued fields using a connection V¥ in (VP C TP) — P and §L/dp the
horizontal differential with respect to V.

Let ® : G x P — P be a free and proper action such that for all g € G,
mx,po®y =mx p. Then P — ¥ = P/G is a G-principal bundle and the action
in P can be lifted to J! P. This defines 7g : J'P — (J'P)/G and, according to
[12], once fixed a connection A in P — 3, there is an identification

4:(J'P))G =J'S @ (T*X @5 AdP) (5)
itp=ito @ lp,p* Ala

where 0 = 5 p o p = [p]g. We shall denote p = [p, p* A]¢.Given a G-invariant
Lagrangian L : J'P — R is a G-invariant Lagrangian, and its reduced La-
grangian | : J'Y @ (T*X ®x AdP) — R, the main result in [12] states that
the variational principle defined by L is equivalent to the fact that the reduced
section jlo @ p(x) satisfies the Lagrange-Poincaré equations;

5l v 0l

= —divV s =0

a 5 iv 5 ,
5l .y ol sl -

5—0— v 5j10' <6—p,ZTUB>.

This is, in turn, equivalent to the variational principle

a4
de

/l(jlaa@ﬁa)\/olzo
e=0JX



for variations j'o. @ p. such that 5 = VA7 — [77, ] — B(d0, To), where do is
an arbitrary vertical variation of o, 77 is an arbitrary section of AdP — X such
that s aqapf) = o and VA is the connection on AdP induced by A and defined
§2. This procedure is called Lagrange-Poincaré reduction for field theoretical
covariant Lagrangians.

The attentive reader may have noticed that V- is a connection on AdP — %
and, consequently, acts on sections of AdP — ¥ while 7 is a section of AdP —
X. We shall now explain how to extend a connection to derive this kind of
sections. Let V' — P be a vector bundle with connection V and P — X a fiber
bundle, given f: X — V a section of V. — X, define the V-derivative of f with
respect to u, € T, X as

Vo = | T € ey s

where c(t) is a curve in X such that ¢(0) = u,, DY /Dt is the usual covariant
derivative associated to V and t — f(c(t)) is a curve in V. As f is a section on
V=X,

idy =7mxvof=nxpompvolf
and p = wpy o f is a section of P — X. Then, f(c(t)) = fonx.p o p(c(t))
projects to curve p(c(t)) in P with Dp(c(t))/dt|i—o = Tp(u,) and

DV

F(e®) =V, pun [
t=0

where f is a local section of V' — P around p(z) such that flim(p(x)) = fomx,p.
Sometimes we will use the abuse of notation f = f.

4 The FTLP category

We now define the category of bundles where reduction by stages for Field t
Theoretical covariant Lagrangians can be performed.

Definition 2 Given X a manifold called base space, the category FTLB(X) of
field theoretical Lagrange—Poincaré bundles over X is defined as follows:

(A) The objects of FTLB(X) are bundles of the form J'P&(T*X®@pV) — P,
where mxp : P — X is a bundle not necessarily principal, T*X — P is
an abuse of notation for the pullback % pT*X — P, and V — P is a
vector bundle which is the vectorial part of an £B-bundle. In other words,
TPV — P is an LB-bundle, which in turn is equivalent to the existence

of
(i) a Lie bracket, [,], in the fibers of V;
(ii) a V-valued 2-form w on P;

(iii) a connection, V, on V. — P;



() a Lie bracket operation on the sections Z ®u € T'(TP® V) defined by
[Zl D uy, Zs B 'LLQ] = [Zl, ZQ] &) VZIUQ — VZ2U1 — w(Zl, ZQ) + [Ul, UQ]

(B) Let J'P, @ (T*X ®p, Vi) — P1 and J'Py & (T*X ®p, Vo) — P be two
field theoretical Lagrange—Poincaré bundles over X with structures [,];,V;
and w; on V; — P;, i = 1,2. A morphism, f: J'P,® (T*X @p, V1) —
JP, @ (T*X ®p, Vo) is a bundle map covering fo : P — P5 that satisfies

(i) fo:P1 — Py is a bundle map between Py — X and P, — X covering
the identity on X,
(it) f(J'P1) C J'Py and fip, = j' fo, the 1-jet extension of fo,
(i) f(T*X @p, Vi) CT*X ®p, Vo and fir-xep v, = idf, ® f, where

ids, ® f: T*X ®@p, Vi 5T*X ®@p, Vo
(p1, @) @ v = (fo(p1), @) ® f(v)
(p1,a) € (t% pT*X)p, and f : Vi — Va is a vector bundle morphism
covering fo and commuting with the structures on V; given by |,1;,V;

and w; on V; — P;, i = 1,2. More explicitly, given u,uw € (Vi)p,,
2,7 € (TPy)p, and a curve v(t) in Vi;

f([uvu/]l) = [f(u)a f(u/)]27
f(wl(zv Z/)) = W2(Tf0(Z)7TfO(Z/))7

and

/(2) -2

are satisfied.

Remark 3 There are several special cases of objects in FT £(X) appearing in
the present bibliography. For V' = 0, we obtain 1-jet bundles used in Lagrangian
covariant Field Theory (for example, see [15]). Another instance of object in
FTLP(X) is the quotient of a 1-jet bundle J!P, by a proper and free lifted
action of a Lie group G on P found to be isomorphic to J'(P/G)& (T*X @ p/c
AdP) in [12]. In the case where P — X is G-principal bundle, the quotient
JIP/G is a FTEPB(X) bundle of the form T*X ® AdP which is the vector
bundle underlying the affine bundle of connections used in [7] to perform Euler—
Poincaré reduction.

Finally, the particular case when X = R and P = R x @, with @ a manifold,
gives the £ bundle

TR x Q)®AdR x Q) ~ R x (TQ & AdP)

appearing when reducing time-dependent Lagrangians in classical Mechanics.

10



There exists a way of thinking bundles in FT£PB(X) as regular £ bundles.
First, we start by defining relevant subcategories of £ bundles.

Definition 4 Given X a manifold called base space, we define the subcategory
LB(X) of LB whose objects are LB bundles TP @V, such that P is the total
space of a fiber bundle P — X, and whose morphisms are £B morphisms,
f=Tfo @f_ TP ® Vi — TP, ® Vs, such that fy : PL — P5 is a bundle map
over X, that means, fo covers idx.

Proposition 5 The applications

F: SR(X) -FTLPR(X)
TPV —J'Po(T*X®V),

F : Hom(£PR(X)) —»Hom(FTLP(X))
Tfo& f i (fo)® (idg, @ f),

define a covariant functor with inverse. Thence, the categories £R(X) and
FTEP(X) are isomorphic.

Proof. Let TP @V € £P(X),
F(idrpgyv) = F(Tidp @ idy) = jl(idp) S (ididp ®idy) = id]:(TP@V).

On the other hand, given f, g € Hom(£B(X)) it is easy to see that F(go f) =
F(g)oF(f)asT(gof) =TgoTfand jl(gof) = jlgojf. These two properties
prove that F is a functor. It has an inverse since
G: FTLPR(X) =LP(X)
J'Po(T*X®V)=TPaV,

G : Hom(FTLB(X)) —Hom(LP(X))
7' (fo) ® (ids, @ f) =T fo® f,
is well defined, G o F = idegp(x), and F oG =idprep(x). ®
Corollary 6 The following three statements are equivalent: ' (fo) @ (idys, @ f)
is an isomorphism; T fo ® f is an isomorphism; and f is an isomorphism.

Proof. The first two statements are equivalent since F is an isomorphism
of categories. The third statement is equivalent to the others since f fully
determines both j!(fo) ® (ids, @ f) and Tfo @ f. m

We shall define the notion of an action of a group G on an object of

FTLP(X).

11



Definition 7 An action in the category FTEB(X) of a group G on an object
JIPR(T*XQV) of FTEPR(X) is @ : Gx (JIPS(T*X®QV)) — JIPO(T*X®V)
such that for each g € G, @4 : J'P@ (T*X V) = J'P& (T*X ®V) belongs to
Hom(FTLB(X)). We will say that this action is free and proper if the induced
action on P by the functions (D4)o is free and proper.

Proposition 8 Let J'P®(T*X ®pV) be an object of FTEB(X) and let [,], V
and w be the structure in V. Let G be a Lie group acting freely and properly on
JIP@®(T*X @p V) and A a connection in the principal bundle P — ¥ = P/G.
The bundle

J'E @ (T*X @x (AdP @ (V/G)))

with the structure [,]%, V® and w® on AAP @V as in Proposition 1 is an object
in FTLPR(X) diffeomorphic to (J*P & (T*X ®p V))/G via the bundle diffeo-
morphism

Ba:(J'PO(T*'X®V))/G — J'S & (T*X ® (adP & (V/Q))) (6)
[]alcs S ((pu O‘)v U)]G = (TT"Z,P oj;s, [p7 S*A]G + ((07 a)? [U]G))v

where p € P, 0 = s p(p) €8, x = x.p(p) € X and jls € J;P.

Proof. As G acts on J'P & (T*X ® V), for each g € G there exists an isomor-
phism

Py =7 ((g)o) & (id(a,), ® Pg): J'PH(T*XRV) = J'/PO(T*XQV)

of the category FTLPB(X). Therefore, by Corollary 6, G acts on TP ®V =
F-YJ'P® (T*X ® V)) with isomorphisms

FHO,)=T(®,)0@®,: TPOV - TPOV.

The quotient of TP & V by this action using connection A is isomorphic to
another £P bundle, T¥ & AdP @ (V/G) with structures [,]%, V® and w®. This
bundle happens to be in £P(X) since ¥ — X, then, from Proposition 5

FTLS@AdP & (V/Q)) = J'S o (T"X @ (AdP & (V/Q)))

is isomorphic to (J*P @ (T*X ®@p V))/G. Finally, it can be checked that 84 is
well defined and that

Bl IS e (T*X ® (adP @ (V/Q))) =(J' P (T*X @ V))/G
0o B Ly ® ((0,), [v]e) l—>[(H0r;)4 08, +£p0ly) @ ((p,a),vp)la,

where v, € 71;71‘/(1,) = Vp such that [vyle¢ = [v]g and K, : (AdP); — VP
defined by ry([p,lc) = €7 m
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5 Variational problems in FTL£YE bundles

Let J'P @ (T*X ®p V) be a FTLYP bundle. A Lagrangian density is a smooth
fiber map £ : J'P @ (T*X ®p V) — \" TX where n the dimension of X. We
will assume that X is orientable and we choose a volume form Vol € A" TX,
then, the Lagrangian density can be expressed as £ = LVol with L : J'P ®
(T*X opV)—=R.

Let U C X be an open subset whose closure U is compact. We will only
consider smooth sections jlp @ v : U — J'P @ (T*X ®p V) such that v €
L(U,T*X ®p V) projects to a section p = mpr-xgy ov € I'(U, P), the 1-jet
extension of which is j'p. These sections are called allowed sections. We say
that jlp@v e T(U,J'P® (T*X ®p V)) is a critical section for the variational
problem defined by L if

d

de

/ L0 pe @ ve) =0 (7)
e=0JU

for all smooth allowed variations j'p. @ v.. However, in order to define the
set of allowed variations we will first introduce a connection in T*X ®p V
from a connection V¥ in TX — X and a connection V on V' — P. In fact,
given v € T(P,T*X ®p V), Z € X(P) and u € X(U), the connection VL on
T*X @p V — P is given by

(VZ) () = Vz(u(w) = v(Vir, . z)Ww)- (8)

Definition 9 An allowed variation of an allowed section, jtoov:U — J'P®
(T*X @p V), is a smooth map jlp(z,e)®v(r,e) : UxI — J'PS(T*X®pV),
where I is an open interval with 0 € I, such that:

1. for alle € I, jlp(z) ®ve(x) : U — J'P @ (T*X ®p V) is an allowed
section and j'pe ® velov = j'p @ vlov;

2. fore =0, jp.(x) @ vo(x) = jp(2) ® v(x);
3. the variation of v is of the form

DVLVE ~
ov = = Vu—[p,v] + p*(ispw),
De e=0 8

where w is the 2-form in the additional structure of V.V is the V-derivative
of(V,V) = P — X and p € T'(U,V) an arbitrary section with wpyou = p
and ploy = 0.

Remark 10 Let jlp. @ v. be an allowed variation of j'p ® v, the variation of
Pe = TP, T+X®pV O Ve 15 vertical in the sense that

dp: ()
de

dp(x) = € V)P = ker(Tyz)7x,p).

e=0

Consequently, 6j'p(x) € V) J' P = ker(Tj payTx, 11 p)

13



Remark 11 It is very important to realize that, since p = Tpr-x0pvV, GN
allowed section (j'p,v) is completely defined by v € T(U,T*X ®@p V). In a
similar way, an allowed variation is completely determined by dv since dp is its
projection along the map V. — X.

Remark 12 Given u, € T, X,

DYV, DV v (uy)

-~ - X _
ov(us) = De Ezo(um) T De |, UV, p(op) %) =

DV (uy)

)
De =0

where u is a local section of TX — X around z such that u(z) = u; and the
last equivalence is a consequence of dp being vertical. Thus, the variation dv
does not depend on the connection VX on TX — X.

We now find the variational equations defined by these set of allowed sections
and variations. For any smooth function L : J'P & (T*X ®p V) — R, the fiber
derivatives are defined as

5L d ;
<W(31p@v)=0‘> de E:OL((31p+ c) D v); ©)
<f5_f(j1p@u),ﬂ> B % EzoL(jlp@ (v +€B)), (10)

where a € T*X ® VP and g € T*X ® V. Therefore,

(S(;—fp(jlpGBV)ETX@VP*, i—f(jlpGBV)ETX@V*,

and if we compose them with a section jlp(z) ®v(z) € T(U,J'P @ (T* X @ V))
we obtain 6L/§j'p(x) in T(U,TX ® VP*) and 6L/év(z) in T(U, TX ®@ V*).

Given V¥ a linear connection on TP — P and VX a linear connection
in TX — X, using the dual and the product connections, there is a lineal
connection in T*X ®p T P. According to [19], this linear connection induces a
general connection V7 "P on J'P — P that does not depend on the choice of VX
Furthermore, we can choose V¥ to be projectable to VX and the connection in
V7P will be affine. In addition, we define an affine connection, vI'P g VvV, in
J'P @ (T*X ®p V). Therefore, we define an horizontal derivative,

5L, , d
<5—p(3 p®V),Zp> =

where Z, € T,P and ((e) is a curve in P such that ¢(0) = Z, and CJ’.ﬁp@V(e)
is the horizontal lift of ((¢) to (J'P @ (T*X ® V)) through j'p @ v using the
connection V7' P ¢ VL. Thus,

L(Gr pesu (€)); (11)

e=0

5L
= T*P.
5p(3 poV)E
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We will also need a general notion of divergence of fields with values in a
vector bundle. Let E — P be a vector bundle with affine connection V and
P — X a fiber bundle, we define for any x € I'(X,TX ® E*) the divergence
divVy € I'(X, E*) such that, for any n € I'(X, E),

div(&,m) = (div¥x, n) + (x, Vi),

where div is the usual divergence of a vector field in X (with respect to the
volume form Vol). In our exposition we will use the operators

divV :T(U, TX @ V*) = T(U,V*);
div? : (U, TX @ VP*) - T(U,VP*);

induced by the connection V in V' — P, and the restriction of the connection
V¥ to VP CTP.
Finally, we define the coadjoint operator in this context as

ad :T(U, T*X @ V)x (U, TX @ V*) =I(U,V*)
(v1,v2) = (= ady, v2(p) = (v2, [v1, pl)
for all u € T'(U,V).
Proposition 13 Let J'P @ (T*X @ V) be a FTSR bundle with a Lagrangian
density L : J'P® (T*X @ V) - N"TX and a volume form Vol € \"TX,
such that £ = LVol. Let V¥ a linear connection in TP — P. Then an allowed

section jlp@v € DU, J'P @ (T*X ®@V)) is critical for the variational problem
defined by L if and only if it satisfies the Lagrange-Poincaré equations:

0L . oL

ad 5 —div 5, = 0, (12)
§L . p oL oL . p 0L
o~ Gy e 1

where T is the torsion tensor of connection VT. Since this connection is
arbitrary we can always choose a connection without torsion and remove this
term.

Proof. Using the derivatives defined by equations 9, 10 and 11, we rewrite the
derivative of the action as;

d
L jlpa Dre) =+
s_o/U ( ) de
_ [ /8L, dpe(a) / 5L . DV jp.(a)
_/U<5—p(x), < E_O>V01+ (5@ =

+/U<‘;—f(;c),%§:”) 5_0>V°1'

15
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de s_o/U (j pe EBUE) ?

Vol
e=0




We know from the definition of allowed variation that

DV" Ve
De

= Vpt— [ ] + 9 (i5p0). (14)
e=0

On the other hand, since the variation of p is vertical and V¥ is projectable,

Jlp
DY " jlpe(x)
De

P,
DYV jlp(z)(us)
De

(ug) =

e=0

e=0

for all u, € T, X. Consider p.(y(t)) where () is a curve such that 4(0) = u,.
From the formula

vP vP
B 00 = T Le0(0) = 17 (Lo, o 2(0) )
we get that
vItP g " B
DD;&-M) (ug) = VE 5p(2) + TP (0p(z), Tuplus)) (15)
e=0

After substitution of equations 14 and 15, the derivative of the action is

/‘C(jlpa@ys):
e=0JU

_ /U <i—i($),5p($)>\701+ /U <£—1p(a:)ﬁp5p(x)+TP(5p(x),Tp)>vO1

d
de

" /U <f5_§($)’ Vi [ v) + w(ép(w),Tp)> Vol

B oL, . p dL /oL . p\ /oL |
_/U<6p(x) div 5j1p(x) <—5j1p’ZTpT > <5ﬂ,szw>,6p(x)>Vol

+ / <—divv5—L(:c) + ad,, u> Vol,
U ov

where for the second identity it has been used that dplogy = 0 and p|sy = 0.
Finally, from the last expression is clear that j!p(z) @ v(z) is critical if and only
if the Euler—Poincaré equations are satisfied. m

6 Reduction by stages

In this section we shall see that the reduction procedure can be performed in
the category FTEPR. Let J'P @ (T*X ® V) be an object in FTEP, G a Lie
group acting freely and properly on J'P @ (T*X ® V) and A a connection on
P — ¥ = P/G. We recall from subsection 2.2 that the connection Von V — P
induces an affine connection [V(AVH)}G yonV/G =%, for Y € X(X). Hence,
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there is a [V(A’H)]G—derivative on V/G — ¥ — X denoted by [@(A’H)] . On

the other hand, the vertical component of the reduced connection, [V(A’V)] C.é
is not a connection since we derive with respect to £ € I'(AdP). However, given

a section [w] of V/G — X, we define for all z € X

(AV) eV
VAV @) = (€} ]o(),
where v € V' such that my/q v (v) = [w](z), and £ = [p,&]g with p = 7y p(v).
This is well defined since £ = [gp, Ady€]e and g€} = (Adg€)y, .

Proposition 14 Let J'P & (T*X @ V) be an object in FTLR, G a Lie group
acting freely and properly on J'P @ (T*X ® V), Vol a volume form on X and
L:J'Pa(I*"X ®V) — R a G-invariant Lagrangian.

Consider A a connection on P — ¥ = P/G and

'Y e (T*X @ (AdQ & (V/G))) = R

the reduced Lagrangian induced in the quotient via the identification (5). Given
a smooth local section j'p®v e T(U,J'P® (T*X ®@V)), where v = ((p, @), v),
we define the reduced local section

jlo@pe Ve =Bacma(i'pev)= (Trpxoj'p) @ lp,p*Ale @ ((0,a),v),
where ¢ € T(U,Y) is s, p o p. Then, the following statements are equivalent

(i) Section jlp dv € T(U,J'P & (T*X ®@ V) is a critical section for the
variational problem defined by L on J'P & (T*X @ V).

(ii) Section jlp@v € T(U,J'P® (T*X ®@V)) satisfies the Lagrange-Poincaré
equations given by L in J'P @ (T*X ® V).

(iii) Section jlo®p® [Vl € (U, J'S @ (T*X ®@ (AdQ & (V/Q)))) is a critical
section for the variational problem defined byl on J*X & (T*X @ (AdQ ®
(V/G)))-

(iv) Section jlo®p® V] € T(U,J'L @ (T*X @ (AdQ @ (V/Q)))) satisfies the
Lagrange-Poincaré equations given by | in J'X & (T*X ® (AdQ ® (V/Q))).

Proof. From Proposition 13, statements (i) and (ii) are equivalent. In an
analogue way statements (iii) and (iv) are equivalent. We will prove the result
by checking that statements (i) and (iii) are equivalent.

Let j'p. ® v, be an allowed variation of j'p ® v and

jlo's @ pe ® [V]G,s = ﬂ.A o 7TG(.jlps S Vs)a
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the projection of the allowed variation in J*P @ (T*X ® V). Since

d d
/ L(jpe @ ve)Vol = —
e=0JU

%7 de

/6, dou(x) st DY o ()
_w/U<5_U(x)7 de 6_0>V01+‘/U<5j10.($)7 De

/ l(jlgs S2) ﬁs S¥) [V]Gyg)vol g
e=0vU
o D p. @ [V]g.(x)

Vol
e=0
— Vol,
P [V]G) De a—0>

the variational problem defined by L on J'P & (T*X ® V) is equivalent to
consider variations of jlo @ p @ [V]g obtained by projecting allowed variations
of j'p ®v. Then, for all u, € T, X,

D' 0Wae| (- Do ® Moe(ua)
* De

De ) =0
= V3,5: () © (VA0 ]650 o)) = W6 (60, 5 (1))

= Vi, pe(u2) & (VY g.sp () = VAV 6 gl0l6 (1) = W] (00, pe(u)) )

e=0

where 77 is such that dp = do @ 7. From Lagrange-Poincaré reduction in jet
bundles (see [12, Corollary 3.2]), we know that

VioPe (1) = Vo, 1 = [0, pluz)] + B30, To(uy)).
On the other hand, as the variation v is allowed
[Ve,5plVlc (uz) = [ (us)]e = [Va, i = 1 v(ue)] + w(8p, Tp(us))]e-

We rewrite this class in an alternative way. First,

Vuctle = Vrpu)tle = Vrow) s e
[V(A’H)]G,To(uz)[,u]G + [V(AyV)]Gyﬁ(um)['u]G

= (VAT e + VA6, (W,

where we have defined [VAYV)q . [u]e = [V(A*V)]Gﬁ(uw)[u]c. We also have
that [, »(u.)lle = [l [#(ua)]c], and
w(@p, Tp(uz))la = [w(bo & 7, To(us) ® pluz)))a
= [wla(d0, To(us)) + [wla(, To(u)) + (Wl (80, pluz)) + [wW]a (7, plus)).

In conclusion, for projected allowed variations

L= v ~ )
D%i[]as ()= (Vi = 7 p(wa)] + B(oo, To(u,)) ) &

W(A’H)]G,uz e + W(A’V)]G,uz e — [[Ha, [v(uz)la] — [V(A’V)]G,ﬁ[v]c(uz)
+ Wle(do, To(uz)) + [wla (7, To(us)) + [w]a (7, pluz)),
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where 7 € T'(U, AdP) such that ms aap(7) = o, 7sr = 0 and [u]¢ € T(U,V/G)
such that 7s,v,¢([4le) = o, [ulalov = 0. We now see that this variations
coincide with the allowed variations in J1¥ & (T*X ® (AdQ & (V/G))). An
allowed variation of section jlo @ p @ [v]¢ satisfies

DEp. & Vg,

Dy () = Ve (@ We) ~ e lue.pe Ve (ua)]& + w¥ (b0, Tou,)

where 71 [u]g € D(U, AdP & (V/G)) such that 75 aapa(v/e) (19 [u]c) = 0, and
7@ [p]a|lsv = 0. The additional structure in AdP @ (V/G) is the one detailed
in Proposition 1. Hence,

Ve, (0@ [ue) = Vi, e 1)
= V1t ® (VAP 1o e — [lo(To(us), )
= Vi, 1® (VA l1a + Wlo(, To(u,)) -

In addition,

and
w860, To(uy)) = B(d0, To(uy)) ® w(do, To(uy)).

These last three expressions prove that the allowed variations in J'X @ (T*X ®
(AdQ @ (V/@G))) are the same as the projection of the allowed variations of the
original space and, consequently, (i) and (iii) are equivalent statements. m

Remark 15 Let N be a normal subgroup of G, and K = G/N the quotient
group. We can reduce L by N and afterwards by K. Let Ax be a principal con-
nection on P — P/N and Ag/n a principal connection on P/N — (P/N)/K.
These connections are said to be compatible with respect to A if for allu € TP,

A(u) =0 Ax(u) =0 and Ag/n(Tmp N, p(u)) = 0.
In this case there exists a £B-isomorphism from T(P/G) ® AdP @& (V/G) to
T((P/N)/K)®t® (8@ (V/N))/(G/N),

where n is the Lie algebra of N, € is the Lie algebra of K and @i, t their respective
adjoint bundles. Hence, it is equivalent to perform reduction directly than by
stages. This will later be exemplified in §9 below. For more details, see [, §6.5]
and [3, §8.4].
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7 Reconstruction in FTL)

Given a critical section j'o@p®[v]¢ in T(U, J'S(T* X @(AdQ®(V/G)))) for 1,
we investigate the existence of a critical section j'p@v in T(U, J'PH(T* X V)
for the unreduced Lagrangian L.

Let o(z) = 7 v/ ([V]a(x)) = mg,aap(p(z)). This section in T'(U, ¥) defines
the G-principal pull-back bundle c*P — X

0P ={(z,p)lrs,p(p) = o(x), v € X,p € P}

of the G-principal bundle P — . In addition, ¢*P can be identified with
P? ={p € Plrs,p(p) € o(X)} by p € P7  (7x,p(p),p) € 0*P. As o(z) =
ms,AdpP(p(x)), the section p(z) can be interpreted as a section of I'(U, AdP7)
and there is an equivariant horizontal 1-form w? € Q!(P7,g) such that for all
re X andu, € T,X,
ﬁ(uw) = [pva(up)]cv

where p € P? and u, € T, P such that Twx, p(up) = ug. The connection A on
P — ¥ induces a connection A% on P° — X and recalling that the space of
connections of a principal bundle is an affine space modeled over the space of
1-forms taking values in the adjoint bundle, we define a connection A? as:

AP = A7 — WP

Theorem 16 Let A be a principal connection on the on the principal bundle
P—Yandlet L: J'P®(T*X @ V) — R be a G-invariant Lagrangian defined
in a FTSP bundle. Finally, letl: J'S @ (T*X @ (AdQ & (V/G))) — R be the
reduced Lagrangian.

Then, if jlp@v in (U, J'P& (T*X ®V)) satisfies the Lagrange-Poincaré
equations given by L in J* P®(T*X®V), then the reduced section jo®pd[v]e €
DU, J'Ya (T*X ® (AdQ @ (V/@G)))) satisfies the Lagrange-Poincaré equations
given by l in J'X & (T*X ® (AdQ & (V/G))) and connection AP on P — X is
flat.

Conversely, given a solution jlo ® p® [Vl € T(U,J'E @ (T*X @ (AdQ @
(V/G)))) of the Lagrange—Poincaré equations given by I such that AP is flat and
has trivial holonomy over an open set containing U, there is a family ®,(j' pdv),
g € G, of solutions of the Lagrange—Poincaré equations given by L projecting to
jlo@p@[v]e. If the connection AP is flat one can always restrict it to an open
simply connected set contained in U so that its holonomy on U is automatically
zero.

Proof. Suppose that jlo © p @ [v]g is the projection of jlp @ v, in particular,
p = [p, p* Ala, where p is a section of P — X. Observe that for all p = p(x) €
P, Ty P? = Typ(Te X) ® kerT,y,y7s,p and any v, € T, P can be written as
vp = Typp(vg) + {5, where v, € T, X and £ € g. Then,

Aﬁ(vp) = A7 (vp) — w’(vp) = A(vp) — A(Tup(Tpmx,p(vp)))
= A(Tep(vs)) + A&)) = A(Top(vs)) = €.
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Consequently, the horizontal subbundle defined by A? is given by
P
Hy(,) = Tup(T:X),
the horizontal distribution is integrable, the integral leaves are given by
{@4(p(2))x € X, g € G} = @4(Imp),

and A” is a flat connection on P% — X.

Conversely, gjvenjlo@ﬁ@[u]g and o(z) = 75, v/q([V]a(r)) = s aap(p(2)).
Suppose that A? is flat and has trivial holonomy over an open set containing
U. The horizontal distribution of A” is integrable and the leaves cover the base.
Since the holonomy is trivial each fiber intersects the leaf exactly once, that is,
they are sections of P — X. Thus there is a family ®4(p(x)) of sections of
P — X that projects to o via mx x and such that

[p,p" Alg = [p, p" A +w’|c = p.
Furthermore, there is a unique section v(z) of T*X @&V — X such that
7TT*Xea(V/G),T*XeBV(1/(5'3)) = [V|(2), WP,T*XGBV(V(CC)) = p(z).
In addition, ®,(v(x)) is the unique section of 7*X @V — X such that
Tr-xa(v/G), - xav P (V(2)) = [V](z), Trr-xavPy(v(2)) = g(p(z)).

Thus, the family of sections ®,(j'p @ v) = j1®,4(p) & ®y4(v), g € G, projects
to jlo @ p & [v]e¢ and, by equivalence (iv)= (ii) in Proposition 14, they are
solutions of the Lagrange—Poincaré equations given by L. m

The curvature of connection A? can be rewritten in terms of the curvature
B of A. Then, the flatness of A? gives the following reconstruction condition

B—dV'wf — W AW = 0, (16)

where dV* is the exterior derivative of g-valued forms induced by the covariant
derivative on AdP, V4, and the Cartan formula.

8 The Noether drift law in the FTLY and its
reduction

In this section, we define a Noether current for symmetries in FTEY bundles

and prove that is not a constant of motion. Instead there is a drift of this

current that reduces to the new vertical equation appearing in each step of the
reduction.

Definition 17 Let L : J'P @ (T*X ® V) — R be a Lagrangian and G a Lie
group acting freely and properly on J'P @ (T*X ® V) by isomorphisms in the
category FTSB. We define the Noether current as the function

J:J'Po(T*X @pV) - TX ®@p¢*
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such that for all jlpdv € J'P @ (T*X @p V)
. 5L .
TGt p@v)((p,e) @ (p,n)) = W(le@ v)((p, @) @1,),
where (p,a) @ (p,n) € T*X ®p g.

Proposition 18 Suppose that L is G-invariant and let j1p ® v(x) be a section
satisfying the Lagrange—Poincaré equations. Then the Noether current satisfies

div ((j'p & v)* J(p(x),n)) = — <§—f, w(Typ(e),my)) + n,,V<.>> , o amn

where w(Typ(e), n§)+n,‘j/(.) € T*X®V acts by replacing the slot e by an arbitrary
element in TX. This is called the Noether drift law of L.

Proof. As the Lagrangian is G-invariant, for all € g,

0-dz (4 _elen(ipe 0) = (5% 5_oexp(g”)”>
s DY’ expents) + (L 25 eenten
_— X _—, X 12 .
51 De | SPEnde 5 De|_ PN

Since exp(en)jlp = j'(exp(en)p), it is the lifted variation of the vertical varia-
tion exp(en)p of p. Then, for all u, € TX;

Jlp .
DV " exp(en)j'p

(u,) = D7 explens’p(us)
De N

De =0
=Vinl +T 7l Tep(us))

Furthermore, exp(en)v is a vertical variation and

DEexp(en)v DVexp(en)v(uy) v
— 0 |, " 0p = )
€ e=0 € e=0
Then, the G-invariance of L can be written as,
oL p 0L =p p P, P oL v

Finally,
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where we have used relation 18 and Lagrange—Poincaré equations. m
The Noether current is G-equivariant so that it defines a bundle map in the
quotient by G

I @ (T*X @s (AdP @ (V/G))) » TX ®p AdP*

such that for all jlo ® p@ [V]e € J'Z @ (T*X ®x (AdP @ (V/G))), and all
(o,0) @7 € T*X @y AdP,

iGlo@pe ve)(o,a) @7) =

=G ()@ () = | LG o+ el(pe)@uf) o)
e=0

10 @ (5 + c((0:0) ®7) & []g) = f—;ula@p@ Me)(0,0) ©7).

T de

e=0
Consequently, the reduced Noether current j coincides with %

Proposition 19 The drift of the Noether current along critical sections j'o ®
p® [V]le given by equation 17 projects to the equation

(19)
where div* is the divergence of AdP*-valued vector fields induced by connection
VA in AdP and ij(z) = [p(x), n]c

Proof. We rewrite the left hand side of equation 17:

div (J(j*p@v), (p,n)) = div (j(jlo © p& [V]c),7)
= (div4(lo @@ [a).7) + (iG'e @ p & ble), VA7)

(a2t @ 5o Waha) - (5670 @90 Do) [
(

AL (0.0 p0 Do) - ads S0 07 be).n)

On the other hand, the right hand side of equation 17 projects to

_<5[L7[W]G(TU(O)EBP(°)777)+[nl"/(‘)]c>’

V]G

and we conclude by observing that [n V(.)]G = [VA G 5Vlg(e). m
The vertical Lagrange-Poincaré equations,

sl 4l . oo\
dive (%@MG) A5l (5p@5[u1a)‘0’

23



associated to the reduced bundle J'¥ @ (T*X @ (AdP @ (V/Q))) is an equation
in AdP*®(V/G)* acting on vectors 7® [u]g € AAP®(V/G). We can decompose
these equations restricting to each of the factors on AdP @ (V/G). First,

(e ) 1

= div 2 E(gﬁ) & (S[I;G% , 7D [u]G> - <<§—/Z) ® 5[‘ZG> Vine [u]c)>

— div 5—1_ @ ﬁ 7

+( 5[%:, it n)
(52 g ) 7 e} =i (550 + (v 7)

_ div <5[% [u]G> + <div<AxH>5[%, [u]g> + <5[% Wo(To, 77)>

_ <div“4§—;, n> 4 <div(A’H) 5[%0 , [u]g> + <5[% wo(To, n)>

On the other hand;

<ad;@[y]c <§—; ® 5[(2%) P [u]G> = <§—i ® (S[i%, pevle,ne [U]G]>

Lol .l
= (5n) + (e i )

+ (5 V4 gl = V4l = et )

Thus, the vertical Lagrange—Poincaré equations restricted to AdP are

(a2 n) = (ad; 2.7) = (o [TV el + Wla(Ta @ 7.0,

which according to Proposition 17 coincides with the drift of the Noether cur-
rent, while the vertical Lagrange—Poincaré equations restricted to V/G are

<div<A’H>6[%, [u]g> = <adf;]cé[%, [U]G> + <6[(ZG, [V<A’V>]G,p[u]c> :

obtained from the projections of the vertical Lagrange-Poincaré equations in-
duced by L.
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Remark 20 In the special case V = 0, the drift law becomes a conservation law
expressed as a vanishing of a divergence. Indeed, we recover the Noether theo-
rem for covariant invariant Lagrangians. In addition, the conservation of this
current is equivalent to the vertical Lagrange-Poincaré equation of the reduced
Lagrangian:

Aﬂ —ad* ol —

di — =
iv 5 755

0.

9 The molecular strand with rotors

In this section we will discuss a problem of strand dynamics as an example of
the theory of reduction by stages. Our model is called the molecular strand with
rotors and consists of a mobile base strand repeating the same configuration with
different orientation. In turn, this configuration will have a moving piece that
can rotate, called rotor. In this example we will suppose that each configuration
has three rotors, each in the principal axes. However, the case with only one
rotor or multiple rotors non-necessarily along the principal axes follows directly
from our description. The particular case of this model when there are no rotors
has been the object of research, for example, in [11] following the same covariant
Lagrangian approach.

The principal bundle that we shall use has X = R? as the base space and
P=XxR3x80(3) xS* x S! x S! as the total space. The variables in R? willl
be denoted by (t, s), the first one can be thought as the time whereas the second
is the parameter of the stradt. The Lie group SO(3) x St x St x S! acts on P
since for any (z,7r,A,0) € X x R3 x SO(3) x S* x S* x S, where z = (s,t) € R?
and 0 = (61,02,03) € St x St x S!, the element (I',a) € SO(3) x S* x St x St
acts by

(T,a) - (z,r, A, 0) = (2, Tr,TA, 0 + ).

We will first reduce by the normal subgroup SO(3) and then by S* x St x S*.

9.1 First reduction

We denote ¥ = P/SO(3) = X x R? x St x St x S!, the first quotient space, and
(z,p,0) € X. The projection is given by

mep: X xR x SO(3) x St x S! x S' X x R? x SO(3) x S' x S* x §*
(z,7,A,0) —(x,p=A"1r,0)
and its derivative is
Trs p: TP —=TY
(z,7, A, 0,0, 0,07, 09) = (x, p= A" 71, 0, Vg, Vp = A v, — Ao p, vg).

To identify J*P/SO(3) as a FTLP bundle we need a connection A on P — .
In terms of the Maurer-Cartan connection, any connection .4 can be written as

—1 b1
A(Ia T, A7 ovvmvav’UAv’Ue) = UAA + A(CC,T,A, 93 Vg, Ur, UA, 1}9)
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such that for any n € so(3), A(nir,l\ﬂ) = 0 and for all v € TP, A(Tw) =
AdrA(v). In addition, since P — X is trivial, we can trivialize AdP as ¥ x s50(3)
via the identification

[(Ia Ty A7 9)7 C]SO(3) = [(Ia A71T7 ¢, 9)7 AdA*1<]50(3) = (Ia Ail’ra 95 AdAflc)'
Then, the covariant derivative in AdP

DA
D_T [.’L‘(T), T(T)v A(T)v 6‘(7_)7 C(T)]SO(S) =
[2(7), 7(1), A(T),0(7),C(7) — (A AT + Az, 7, A, 0, 27,77, Ar, 07)) X {(T)]s50(3)

induces in ¥ x s0(3) the covariant derivative

(x(7), p(7),0(7),((7)) =
= (a(r), p(r), (7). C(1) = A(z, p, e,0, 27, pr,0,6:) x ((7)).

We lift the section (z,7(z), A(x),0(z)) of P — X to the section in J'P — X,

Dr

(x,r(x), A(z),0(x)),ds + dt,rsds + ridt, Asds + A¢dt, 05ds + 0,dt).

To project this section to J'X @ (T*X @ (X x s0(3))) we evaluate
Az, r, A, 0,ds + dt, reds + ridt, Asds + Aidt, Osds + 0, dt) =

=A A" s + AN+ Ay, AL 0,1, 7, A, 05)ds + Az, m, A, 0,1, 74, Ay, 0,)dt
and

Adp-1 A(x,r, A, 0,ds + dt, rsds + rdt, Agds + Aidt, O5ds + 0idt) =

= Qds + wdt + Ayds + Aydt = Zds + &dt,
where Q = A7TA,, w = A7 TA,,

A, = AdA—l./i(:E, A0, 1,75, Mg, 0,) = fl(x,r,A, 0,1, ps,0,0,),

Ay = A(z,r,\,0,1,p,0,6,), 2 = Q+ A, and € = w+ A;. Consequently, the
bundle J*P/SO(3) is identified with FTP bundle J'X @ (T*X @ (X x 50(3)))
via
Too3) : J'P/G ="' @ (T*X @ (L x 50(3)))
j' (@, (@), Az),0(2)) =5 (2, p(x), 0(2)) @ (z, p(2), 0(x), Z(x)ds + &(w)dt)

and the reduced variables are p, ps, pt, 0, 05, 0¢, = and €. The vertical Lagrange-
Poincaré equations are:

5l v__ dl
- I L R L
adzgstedt 6(2ds + £dt) v 0(Eds + £dt)
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Hence, since

ads o —:xﬁ—gxﬂ
Sdstdt 5(2ds + Edt) s o€’
and B o 8l B
divVe—e—— = 9,— — A Ay x —
N SEds vean - aE A eE TG A G
we conclude that the vertical Lagrange—Poincaré equations are
ol ol ol ol
0=0; Or— + QX — — 20
5E T TR E T N 5 (20)

On the other hand, the horizontal Lagrange—Poincaré equations applied to vari-
ation dp & 460 are

ol ol ol
- 85 -0 ,5 S 00 ) =
<5<pea ) “3(p 00, “3lpabn)” >
ol -
= <m, B((dS + dt, psds + ptdt, 95d8 + tht), (O, 5p, 50))> .

We shall note that §1/5(p @ ) is not a partial derivative, instead we saw in

section 5 that
ol d
—— 0p P o
<6<pea 6) " > de,

where u(e) is a curve in ¥ = X x R3 x Sl x St x St with «/(0) = (0,p,0)
and u” T om0 2dstedi(€) = (U (€),71p(0),316(0),v(e)) the horizontal lift to J'X &
(T*X ® (2 x s50(3))) with v(e) = v1(€)ds + va(e)dt such that v(0) = ZEds + &dt
and v(e) is horizontal. From the connection in ¥ X s0(3) this means that

v1(€)ds + o (e)dt = A(0,6p,0,60) x (v1(€)ds + va(e)dt).

h
l( j1p®j10,Eds+£dt)7

In particular, for € = 0;
v1(0)ds + 2 (0)dt = A(0,6p,0,60) x (Eds + £dt),

and
81 ol ol
(550 0290) = (5590) +(53:0)
+ <§—i,,i(o,6p,0,59) X 5> <5€ A(0,3p,0,60) x g>

It is possible to split the horizontal equations in ¥ in two parts. One related to
R3 for which we make 66 = 0;

ol oL ol =

(% <05p,oo>x§> <§—;,fé<<1,ps,es>,6p>>+<55 BU(Lpe0).80) ).
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and one related to S* x S x S! for which dp = 0;

ol ol ol ol -
<%_858_95_8t6_9,5’59>+<E’A(070’0759)XE>+ (22)
o A 50 O B((1, ps6.), 0 O B((L, p0.6,), 56
<E7 (0,0,0, )X€>—<Ea (( y Ps» s)a )>+<Ev (( y Pts t)a )>
In conclusion, the equations of motion of the molecular strand after reduction
by SO(3) are equations (20), (21) and (22). Yet, they are only equivalent to
the unreduced equations if considered together with the reconstruction equa-
tion studied in §7 above. Observe that in AdP, w” = AZEA~'ds + AEA~1dt.
Therefore,
dAwP = Adp (B, — Ap x B — & + Ay x €)dt A ds,

and
WP AWP = (AZEA" Y ds+AEAT At AN (AZA ds+AEAT L) = —Ada(Ex €)dEAds.
The reconstruction equation (16) is then written as

Ee— A X E—E + A x E—E x £+ AdpB((0, pr, 04,0, ps, 05)) = 0. (23)

9.2 Second reduction
The group S = S! x St x St acts on J'X @ (T*X ® (X x 50(3))) by

a-(z,p,0,ds+ dt, psds + pidt, 0sds + 0:dt) @ (x, p, 0, Eds + £dt)
= (z,p,0 + o, ds + dt, psds + pdt, 0ds + 0,dt) ® (x, p, 0 + o, 2ds + £dt)

for all & € S' x S! xSt Let R = %/(S* x St x S') = X x R3. Since S! x S* x §*
is abelian, the identification AdY = R x R? is immediate and the principal
connection in ¥ — R is trivial. Consequently, we have the identification

s : J'E @ (T*X ® (X x50(3)))/S = J' RS (T*X @ (R x R? x 50(3)))
[(z,p,0,ds + dt, psds + pedt, O:ds + 6:dt) & (z, p, 0, 2ds + Edt)]s —
(x, p,ds + dt, psds + pidt) & (z, p, Osds + 0dt, =ds + £dt),

where JIR® (T*X ® (R x R3 x 50(3))) is a FTLP bundle with extra structure
given by;

vf}m,vp (@, p, B(z, p), ¢ (2, p)) =

= (LL', P ﬁvm,vpa va,v,, - B((Uaca Vp, 0)7 (07 0, 6)) - A(Umu Up, 0, 0) X <)7
the R3 x s0(3)-valued 2-form w® = 0 @ [B]s; and the Lie bracket
[(617 Cl)a (ﬁ27 C?)]s =00
(_A(Oa 07 Oa ﬂl) X CQ + A(Oa 07 Oa ﬂQ) X Cl - B((Oa 07 ﬂl)a (07 Oa [32)) + Cl X CQ)
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The vertical Lagrange—Poincaré equations in the second step of reduction are

5l . Bl

adfy = —d =0.
(0 E)ds+ (04t 509 G0 dt Zds 1 €dt) . 6(0,ds + Opdt, 2ds + £dt)

Given (060, n) € R3 x s50(3), we obtain that, on one hand,

5l
dfy = 9
<a (957u)d5+(9t,f)dt6(95d8+9tdt75d8 +€dt),(5 ,677)>
ol 51
- 0sds + 0,dt, Zds + &dt), (86,
<6<9sds+etdt> © 5(Eds 1 apy [(0=s + Ordlt, Zds + &), (9 577)]>

- <§_i, —A(0,0,0,0,) x dn+ A(0,0,0,80) x E— B((0,0,0s), (0,0,a)) + E x 577>

<§é —A(0,0,0,8:) x o1+ .A(0,0,0,3560) x Z — B((0,0,6;),(0,0,a)) + £ x 577>
On the other hand,
. s ol B ol ol
<le 5(95ds—|—tht,Eds+§dt)’(59’5n)> - (<a 50, 95,97 >

+ <ﬁ B((0, ps,0), (o,o,59))> + <‘S B((0, pr, 0), (0,0,59))>>

8=’ 8¢’
8l 8l 5l 8l
EB<8 5H+at 5—1—.,4(0 , Ps, 0, O)><5—H+A(O,pt,0,0)><%,6n>.

From these two expressions, it can be proven that the vertical Lagrange-Poincaré
equations can be split into two parts related to R3 and so(3). These respectively
coincide with equations (22) and (20), except for the term 61/60 which is zero
from the symmetry of the Lagrangian with respect to S' xS! xS'. The horizontal
Lagrange—Poincaré equations are

ol ol ol ol = 1)
<5_p - 855_ps - 8t6_pt55p> - <E5B((Oapsvo)aap)> + <5§ ((O Pt )75p)> .

In an analogous way as we did in the first step of reduction, we express the
horizontal derivative in terms of partial and fiber derivatives as

1) 0 1)
<5; 5p> <al 5p> <5—é,A<0,6p,o,0>><~> <5é A(0,6p,0, 0>><5>

Therefore, the horizontal Lagrange—Poincaré equation of step two coincides with
equation (21). In conclusion, equations (20), (21) and (22) are obtained as well
in the second step of reduction. However, in the first step of reduction equation
(22) is an horizontal equation whereas in step two it is vertical. Furthermore,
the reconstruction equation from the second step to the first one is easily seen
to be

81595 = 859,5. (24)
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Remark 21 The trivial Maurer-Cartan connection may not always be the more
convenient for a particular Lagrangian. In Mechanics, the study of a rigid body
with rotors in [17] is an example where the appropriate connection adapted to
the Lagrangian is the mechanical connection (the connection defined by a Rie-
mannian metric). Future work will study this example using the techniques of
reduction by stages developed in [3].

9.3 A particular Lagrangian

We now choose the particular Lagrangian in J! P;

L0, A, A Ay 660,00) = 3 (re) + 3 (A7 A TATA)

+ %<A_1At + 9,5, K(A_lAt + 6‘15)> - E(A_lAS, 95, <T‘, 'f‘>),
where I is the inertia tensor of the configuration of the strand, K is the inertia
tensor of the rotors and FE is a function called potential energy. This Lagrangian
combines terms appearing in the Lagrangian given for the rigid body with rotors
in [17] and the Lagrangian proposed in [I1] for the molecular strand. It is
invariant by SO(3) x S x S x S. If the first step of reduction is performed
by group SO(3) with the Maurer-Cartan connection, that is A = 0, then the
reduced Lagrangian is:

1

l(pupsaptueuesuehﬂuw) :§<pt FwXp,prtwX P> +

1
+§<w+9t,K(w+6‘t)>—E

(w, Tw)

~—~~ N | =

0,05, (p,p)),

For this Lagrangian the vertical Lagrange—Poincaré equations (20) takes the
form

0=p X (petr +2w X pt + wt X p+ (w, p)w) + (I + K)w; + Kby

oF 0E
+wx ((I+Kw+ Kb,) —855—Q+Q X5
while the horizontal Lagrange—Poincaré equations (21) and (22) are
OF
—90,) — pyy — =9y
WX (pxXw=2pt) = prt — Wt X p P50
SF
K KOy = 05—,
Wt + K0 50.

together with the reconstruction equation is
ws — Q= O X w.

In turn, the second step of reduction defines the reduced Lagrangian
1 1
l(pvpsaptaaubaﬂuw) :§<pt +w X p,pp+w X p> + 5(w,]w>

1
+

§<W+b7K(w+b)> _E(Qvav (p,p)),
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whose vertical Lagrange—Poincaré equations;

0=pX(pu+ 2w x pt +w X p~+ (w,pyw) + (I + K)w; + Kb,

Kwt +Kbt = 65

oF oFE

+w><((I+K)w+Kb)—8S5—Q+Q><5—Q,
22
da’

the horizontal Lagrange—Poincaré equations are;

OF
w><(pxw—th)—ptt—thp:%m,

and reconstruction equation a; = bg, which makes this equations equivalent to
the ones in the previous step.
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