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The inverse amplitude method is a powerful unitarization technique to enlarge the energy applicability
region of effective Lagrangians. It has been widely used to describe resonances in hadronic physics,
combined with chiral perturbation theory, as well as in the strongly interacting symmetry breaking sector.
In this work we show how it can be slightly modified to also account for the subthreshold region,
incorporating correctly the Adler zeros required by chiral symmetry and eliminating spurious poles. These
improvements produce negligible effects on the physical region.
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I. INTRODUCTION

Effective field theories provide a systematic and model
independent approach to systems whose symmetries and
low-energy degrees of freedom are known but whose de-
scription in terms of an underlying fundamental quantum
field theory is out of reach. The two cases of interest for
this work are, on the one hand, chiral perturbation theory
(ChPT) [1] which describes effectively the low-energy
dynamics of hadrons, inaccessible to perturbative QCD
calculations in terms of quarks and gluons; and, on the
other hand, the effective description of the strongly inter-
acting electroweak symmetry breaking sector (SISBS) [2],
whose underlying fundamental theory remains unknown.

Both cases have in common the existence of a sponta-
neous symmetry breaking of a global chiral SU�N�L �
SU�N�R group down to an SU�N�L�R group. The
Goldstone theorem implies the presence of N2 � 1 mass-
less Goldstone bosons (GB) in the particle spectrum. These
GB thus become the relevant degrees of freedom of the
system below a chiral scale ��, where an effective chiral
Lagrangian can be built in terms of just those GB as the
most general derivative expansion consistent with the
known symmetries. Note that there is a well-defined power
counting so that divergences generated in loop diagrams
that use vertices up to a given order can be renormalized
into the coefficients of higher order terms. In this sense
these effective theories are renormalizable order by order.

In addition, in both examples, there are small explicit
symmetry breaking terms. For QCD the relatively
small masses of the lightest three quarks provide a mass
M� �� to the GB, identified with the pions, kaons, and
etas, so that the effective approach becomes, in practice, a
derivative and mass expansion. For the SISBS, there is a
local SU�2�L �U�1� symmetry whose gauge bosons
couple to the ‘‘would-be GB’’ that, in a unitary gauge,
disappear from the spectrum, giving rise to gauge boson
longitudinal components that thus acquire a mass MV . In
this way the SU�2�L �U�1� gauge symmetry is spontane-
ously, but not explicitly, broken to the electromagnetic
group U�1�EM. In this case, in addition to the derivative
expansion, one expands also in terms of electroweak cou-

pling constants g and g0. The so-called equivalence theo-
rem (ET) [3] states that at high energies (in R� gauges, and
to leading order in momenta over MV and g and g0)
amplitudes involving longitudinal gauge bosons can be
calculated as if they were GB, which, being pseudoscalars,
are much easier to handle. Although this is a high-energy
limit, there is a generalization to the effective Lagrangian
formalism [4] that, for practical purposes, allows us to
identify, up to the difference in scales, the formalisms of
SU�2�ChPTand the SISBS, and therefore, from now on we
will be referring to ChPT, but keeping in mind that our
results have a straightforward translation to the SISBS.

Both cases above are examples of strongly interacting
systems whose most salient feature is the saturation of
unitarity and the associated resonant states, which lie
beyond the reach of perturbative energy expansions.
Thus, it may seem that the use of effective Lagrangians
is limited to energies below those resonances, whose ef-
fects are encoded in the values of higher order effective
coupling constants. However, since unitarity fixes the
imaginary part of inverse partial waves in the elastic re-
gion, the effective Lagrangian approach is also useful in
the resonant region, for instance, used inside a dispersion
relation, in order to obtain the rest of the amplitude. These
techniques are known as unitarization methods, and repro-
duce simultaneously the low-energy expansion and the
lightest resonances without including them explicitly in
the Lagrangian. The great advantage is that such reso-
nances and their properties are generated without prejudi-
ces about their nature or their existence. Also, since the
Lagrangian symmetries and some features of the effective
constants can be directly related to the underlying theory,
like QCD, one can study the properties of these states
based on more fundamental grounds. One of the most
extensively used unitarization techniques is the inverse
amplitude method (IAM) [5–8], which uses the fully re-
normalized effective chiral expansion, without any further
approximation and without introducing any other spurious
parameter, but just the effective constants up to a given
order. Within hadronic physics, it generates the well-
known vector resonances and the more controversial sca-
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lars using parameters consistent with one-loop ChPT, al-
lowing one to establish their different nature in terms of
their dependence on the number of colors. The IAM has
also been extended to two loops [7,9], the finite tempera-
ture formalism [10,11], and to the pion-nucleon sector
[12]. Within the SISBS [13], it provides the prediction of
the general resonance spectrum and how well it could be
detected at the CERN LHC.

However, it is known [7,14] that the IAM fails to repro-
duce correctly the Adler zeros that appear in the subthres-
hold region of some partial waves as a consequence of
chiral symmetry [15]. Furthermore, it generates spurious
poles, or ‘‘ghosts,’’ thus questioning its reliability in that
region, and also casting some doubts about the robustness
of the results in the physical region if such structures were
properly accounted for.

The aim of this paper is to show that a very simple
modification of the IAM can correctly take into account
those zeros and ghosts. This modification corresponds to
terms that had been neglected in the original dispersive
derivation of the IAM since they contribute to higher
orders in the chiral expansion. Actually, we will check
explicitly that such a procedure is justified in the physical
region, where these modifications yield negligible contri-
butions, thus showing the robustness of the standard IAM.
However, apart from improving the IAM consistency, these
terms are essential in the subthreshold region which is
relevant to study the effect of chiral symmetry restoration
on resonances [11], or their dependence on quark masses
[16].

In the next section we will thus revisit the standard IAM
derivation from dispersive theory, where Adler zeros are
neglected, paying special attention to the role of those
zeros in the subthreshold region. In Sec. III we will present
a naive way of extending the IAM amplitude, without using
dispersion relations, that solves the caveats in that region.
Section IV will show a dispersive derivation of a more
general modified amplitude, for the case of equal masses
(e.g. �� scattering). The case of unequal masses, like in
�K scattering, deserves a separate discussion, for the
reasons explained in Sec. V. Finally, in Sec. VI we will
present some numerical results for the modified
amplitudes.

II. THE INVERSE AMPLITUDE METHOD

A. Dispersive derivation

The one-channel IAM [5–7,9] can be obtained by using
ChPT up to a given order inside a dispersion relation. To
simplify the discussion, let us first consider pion-pion
scattering, partial wave amplitudes of definite isospin I
and angular momentum J, although for brevity we will
simply call them t, whose analytic structure in the s plane
is shown in Fig. 1. The physical right-hand cut comes from
unitarity and starts at threshold sth, while the left-hand cut
comes from the t, u channels.

The inverse of t�s� has the same analytic structure,
except for the possible presence of poles corresponding
to zeros of t�s�. In particular, chiral symmetry requires the
existence of the so-called Adler zeros below threshold in
scalar partial waves [1,15], the case of interest in this work,
which we denote by sA. Hence it is then possible to write
the following dispersion relation for the inverse amplitude:
 

1

t�s�
�

1

t�z0�
�
s� z0

�

Z 1
sth
dz

Im1=t�z�
�z� s��z� z0�

� LC�1=t�

� PC�1=t�: (1)

Here and in the following, we will simply write z instead of
z� i� with � > 0 for the imaginary parts inside the cut
integrals. Note that we have explicitly written the integral
over the right-hand cut (or physical cut, extending from
threshold sth to infinity), but we have shortened by LC the
equivalent expression for the left cut (from �1 to 0) and
the pole contribution. We could proceed in the same way
with other cuts, if present, as in the�K case. In addition we
have made one subtraction to ensure convergence, at a
point z0 � sA; s2.

We now recall that unitarity, for physical values of s in
the elastic region, implies

 Im t�s� � ��s�jt�s�j2 ) Im
1

t�s�
� ���s�; (2)

where��s� � 2pCM=
���
s
p

. Let us remark that since Im1=t �
�� we know exactly the integrand over the elastic cut.

In contrast, ChPT amplitudes are obtained as a series
expansion t�s� � t2�s� � t4�s� � . . . where t2�s� � O�p2�,
t4�s� � O�p4�, and p stands for the pion mass or momen-
tum. Therefore elastic unitarity is not satisfied exactly, but
only order by order as follows:

 Im t2�s� � 0; Imt4�s� � ��s�jt2�s�j
2; . . . : (3)

Let us also note that t2�s� is a pure polynomial and has no

FIG. 1. Analytic structure of pion-pion scattering partial waves
and the integration contour used to obtain their dispersion
relations.
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cuts, and we can thus write a trivial dispersion relation for
1=t2�s� that reads

 

1

t2�s�
�

1

t2�z0�
� PC�1=t2�; (4)

where now the pole contribution is due to s2, the Adler zero
of t2. In addition, except for the poles, the function
t4�s�=t

2
2�s� has the same analytic cut structure of 1=t, and,

using Eqs. (2) and (3), over the physical cut we find

 Im
t4�s�

t22�s�
� ��s� � �Im

1

t�s�
: (5)

We can therefore write another dispersion relation simi-
lar to that of 1=t�s�, but for t4�s�=t22�s�,

 

t4�s�

t2�s�
2
�
t4�z0�

t2�z0�
2 �

s� z0

�

Z 1
sth

dz
Imt4�z�=t2�z�

2

�z� s��z� z0�

� LC�t4=t
2
2� � PC�t4=t

2
2�; (6)

where the pole contribution, once again, is due to the Adler
zero of t2.

We are now going to relate the dispersion relation for
1=t�s� with that for t4�s�=t22�s�. As we already commented,
Im1=t�s� � �Imt4=t22�s� on the right cut, and therefore the
integrals over the physical cuts for 1=t�s� and t4=t22�s� are
exactly opposite to each other. In addition, using ChPT we
find that LC�1=t� ’ �LC�t4=t22�, which is a well-justified
approximation, since, due to the subtraction, the integrand
of LC is weighted at low energies, precisely where ChPT
applies. Finally, we have to evaluate the subtraction con-
stant in Eq. (1), and this can only be done as long as z0 is in
the low-energy region, where it is perfectly justified to use
ChPT to find 1=t�z0� ’ 1=t2�z0� � t4�z0�=t2�z0�

2. However,
note that this expansion is a very bad approximation for z0

near s2 or sA, where t2 and t vanish. Therefore, we only
know how to relate those dispersion relations for subtrac-
tion points z0 in the low-energy region, but sufficiently far
from the Adler zeros. In Sec. VI we will check that the
results have very little sensitivity to the choice of z0 as long
as it lies in this region. When this is the case, using Eqs. (1),
(4), and (6) we can write 1=t as

 

1

t�s�
’

1

t2�s�
�
t4�s�

t2�s�2
� PC�1=t2� � PC�t4=t

2
2� � PC�1=t�:

(7)

The standard dispersive derivation of the IAM [6,7]
simply neglected the sum of pole contributions to arrive at

 tIAM�s� ’
t22�s�

t2�s� � t4�s�
; (8)

thus providing an elastic amplitude that satisfies unitarity
and has the correct low-energy expansion of ChPT up to
the order we have used. When such amplitude is chirally
expanded to O�p4�, this implies [7] that the total pole

contribution to t�s�, even without its explicit calculation,
has to be O�p6�. In Secs. III, IV, and V we will calculate it
explicitly to arrive at the modified IAM.

B. IAM properties and its naive derivation

Incidentally, we can recast Eq. (2) as

 t�s� �
1

Ret�1�s� � i��s�
; (9)

and thus it seems that the IAM can also be derived in a
much simpler way by replacing Ret�1 by its O�p4� ChPT
expansion Ret�1 � �t2 � Ret4�=t

2
2. This is the way unitar-

ization methods are usually presented, although it makes
no use of the strong analytic constraints of amplitudes,
which are indeed absent in Eq. (9). Furthermore, the criti-
cism is immediately raised that the ChPT expansion cannot
be used at high energies.

However, note that the dispersive one-channel IAM
derivation in the previous section imposes analyticity in
the form of two dispersive integrals and makes use of the
ChPT expansion (up to one loop in this case) for the
subtraction constants and the left cut. The use of ChPT
for the subtraction constants is well justified, since it is
used at s � z0 in the low-energy region. Since the integral
extends to infinity, ChPT may seem a worse approximation
for the left cut or possible inelastic cuts; however, the
subtraction suppresses the high-energy region that contrib-
utes little, as explained above. Furthermore, when the IAM
is used for physical values of s above the physical thresh-
old, the left cut is damped by an additional 1=�z� s�
factor, and not only the high-energy part, but its whole
contribution is rather small. There are no model dependent
assumptions, but just approximations to a given order, and
therefore the approach provides an elastic amplitude that
satisfies unitarity and has the correct ChPT expansion up to
that given order. It is also straightforward to extend it to
higher orders [7,9].

Moreover, Eq. (2) is only valid on the physical cut,
whereas the dispersive derivation allows us to consider
the amplitude in the complex plane and, in particular, to
look for poles of the associated resonances. Actually, al-
ready ten years ago [7] the poles for the ��770�, K��892�,
and most interestingly, the controversial � [also called
f0�600�] were generated without any model dependent
assumptions.

Obviously, and contrary to wide belief, the IAM con-
tains a left cut and respects crossing symmetry up to, of
course, the order in the ChPT expansion that has been used.
The confusion may come from the fact that the IAM has
also been applied in a coupled channel formalism, for
which there is still no dispersive derivation, and has been
frequently used by approximating further the amplitudes
neglecting tadpole and left cut terms [17]. But, strictly
speaking, that would not be the full IAM, which definitely
has a left cut.
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C. IAM caveats: Adler zeros and ghosts

To end this section, we recall that in the dispersive
derivation the sum of pole terms (PC) in Eq. (7) is ne-
glected, since it yields a higher order contribution [7].
However, this leads to a couple of problems related to
the presence of the Adler zeros below threshold in the
scalar waves. Let us first note that, despite we have used
in the IAM the ChPT expansion up to next to leading order
(NLO), due to the t2�s�2 factor in the numerator, it vanishes
at s2, which is only the leading order (LO) chiral approxi-
mation to the exact Adler zero sA. In addition, it is a double
zero instead of a single zero. This, as we will see, leads to

the appearance of a spurious pole on the real axis close to
the Adler zero. As a consequence, the predictions of the
standard IAM below threshold and, in particular, around
the Adler zero position are not reliable.

In fact, note that, since the interval s 2 �0; sth� lies
within the convergence region of the chiral expansion
and t2 changes sign at s � s2, t2 � t4 turns out to be, for
the cases of interest here, a continuous, monotonically
increasing (or decreasing) function in �0; sth� that changes
sign from s � 0 to s � sth. Therefore, there is one single
point ~s where the denominator of (8) vanishes, which, as
long as t4�s2� � 0, produces the spurious pole below
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FIG. 2. Comparison between the IAM and the mIAM for different isospin I partial waves of �� and �K in the scalar J � 0 channel.
The left column covers the region from the left cut up to 1 GeV. The only significant differences between both methods occurs in the
region around the Adler zeros of each partial wave, which is shown in detail in the right column.
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threshold discussed above, i.e., a nonobserved �� bound
state.

For instance, let us consider I � J � 0 �� scattering
(for the values of the low-energy constants quoted in
Sec. VI). This is an attractive channel, so that t2 � t4 is
positive at threshold. Since that function is negative at s �
0 and at s � s2, ~s > s2 in that case, as shown in the upper
right panel of Fig. 2, we find ~s ’ �110 MeV�2 and s2 ’
�99 MeV�2. In the I � 2, J � 0 channel, which is repul-
sive, t2 � t4 is positive at s � 0 and negative at s � s2

[t4�s2�> 0] so that ~s < s2. In that channel, ~s ’
�196 MeV�2 and s2 ’ �198 MeV�2 as seen also in Fig. 2.

Let us also point out that, together with the first Riemann
sheet spurious pole just discussed, the IAM has a compan-
ion pole in the second Riemann sheet below threshold. For
instance, the second-sheet IAM for �� scattering reads

 t�s�IAM;IIsheet �
t2�s�

2

t2�s� � t4�s� � 2 ~��s�t22�s�
(10)

where ~��s� � i��s� i0�� �
�����������������������
4m2

�=s� 1
p

for 0< s <
4m2

�. Thus, if we are dealing with an attractive channel,
like the 00 one, the denominator of (10) is positive near
threshold (dominated by t2 > 0) and diverges to minus
infinity as s! 0�, so that it must have at least one zero,
which again generates a pole if t4�s2� � 0. Since �~�t22 in
Eq. (10) is also an increasing function, there will be only
one such pole.

In conclusion, the existence of the perturbative Adler
zeros and the fact that the IAM amplitude does not repro-
duce them well leads to the presence of spurious poles. A
similar conclusion had been noticed in [18]. In the next
sections, we present, first, a very simple construction of a
modified IAM, along the lines of the previously discussed
naive derivation of the standard IAM obtained without
using dispersion relations, which solves these problems,
and next we show two dispersive derivations of the modi-
fied IAM. One of them is subtracted at arbitrary z0 (within
the range of validity of our approximations) and the other
one at the Adler zero. We will show how the modified IAM
obtained naively corresponds to a particular limit of the
first dispersive approach and comes out directly in the
second. Finally, we will also show that the differences
between the modified IAM formulas are negligible numeri-
cally, and that, while fixing the above-mentioned problems,
the modified IAM does not yield any significant modifica-
tion over the standard IAM in the physical region and to the
resonance poles. Therefore, the results obtained so far in
the literature with the IAM remain valid.

III. MODIFIED IAM: NAIVE DERIVATION

First of all, we will set some notation: as before, we
denote by sA the Adler zero of the ‘‘complete’’ partial
wave, namely, t�sA� � 0. In addition, we will also use the

approximations to the Adler zero at LO, s2, and NLO, s2 �
s4. Thus, t2�s2� � 0 and t2�s2 � s4� � t4�s2 � s4� � 0.

In this section we present a naive, and intuitive, deriva-
tion leading to a partial wave definition which does not
have the Adler zero related problems discussed above. The
derivation follows closely [11], where this problem was
addressed in the context of real pion scattering poles aris-
ing from medium effects such as temperature and density.
In that paper, there was not a formal proof based on
dispersion relations, such as the one we will present here
later, and it was limited to pion-pion scattering.

From the discussion in the previous sections, it is clear
that if we modify the inverse amplitude as 1=tIAM�s� !
1=tIAM�s� � A�s�=t22 with A�s� an analytic function at least
off the real axis, real for real s, the unitarity and analytic
properties of the amplitude remain unaltered. The modified
IAM (from now on called mIAM), then reads

 tmIAM�s� �
t22�s�

t2�s� � t4�s� � AmIAM�s�
: (11)

Consider now the case of �� scattering, where we have
simply t2�s� � t02�s2��s� s2�with t02�s2� constant. Then the
Laurent expansion around s � s2 of the standard IAM
reads
 

1

tIAM�s�
� �

t4�s2�

t02�s2�
2�s� s2�

2 �
t02�s2� � t

0
4�s2�

t02�s2�
2�s� s2�

�O�s� s2�
0: (12)

The idea is that if we want the amplitude to have only an
Adler zero of order one at s � sA, we must subtract from
1=tIAM the above double and single pole contributions at
s � s2 and add a single pole at sA, i.e.,
 

1

tmIAM�s�
�

1

tIAM�s�
�

t4�s2�

t02�s2�
2�s� s2�

2 �
t02�s2� � t

0
4�s2�

t02�s2�
2�s� s2�

�
c

s� sA
; (13)

where c is a so far undetermined constant that, as we will
show now, can be fixed by demanding that the mIAM
formula matches the perturbative ChPT series to fourth
order, namely, A � O�p6�.

In practice, it is simpler to keep track of the different
chiral powers by counting the powers of f�2, where f is the
pion decay constant. Thus, since t02�s2� � O�f�2�, t4 �
O�f�4�, and s4 � O�f�2�, expanding the expression
t2�s2 � s4� � t4�s2 � s4� � 0 around s2 we find

 s4 � �t4�s2�=t
0
2�s2� �O�f

�4�: (14)

Using this in Eq. (13) with sA � s2 � s4 �O�f
�4�, and

requiring that Eq. (11) matches the chiral expansion at low
energies, we find the first two orders of the chiral expansion
for c:
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 c �
1

t02�s2�
�
t04�s2�

t02�s2�
2 �O�f

�2�; (15)

which leads to

 AmIAM�s� � t4�s2� �
�s2 � sA��s� s2�

s� sA
	t02�s2� � t04�s2�
:

(16)

Therefore, the mIAM in Eq. (11) with AmIAM�s� in
Eq. (16) and sA approximated by its chiral expansion given
above matches the chiral expansion of the amplitude up to
fourth order and has the Adler zero at the same position and
with the same order as the perturbative amplitude.
Furthermore, we have solved, in turn, the spurious pole
problem. In fact, since AmIAM�s2� � t4�s2�, the denomina-
tor of Eq. (11) vanishes at s � s2. But, for s � s2 we have
shown that AmIAM�s� � O�f�6�, and therefore our previous
argument about the monotonous behavior of the denomi-
nator still holds so that the denominator vanishes only at
s � s2, where there is no pole contribution. The same
holds for the spurious second-sheet poles. In Fig. 2 we
show the mIAM amplitude in the I � J � 0 channel, and
we observe that is not singular below threshold and re-
mains close to the standard IAM result away from the
Adler zero region. The same situation takes place in the
I � 2, J � 0 channel. Finally, we have checked that, as
expected from our previous arguments, the f0�600� or �
pole remains at the same place either using the second
Riemann sheet extensions of the mIAM or the IAM (see
Table I).

In the next sections, we will check how a modified IAM
can also be obtained by considering explicitly the pole
contributions in the dispersive derivation, thus ensuring
the correct analytic properties of the amplitude. We will
also show that the modified formula obtained with the
naive derivation in this section can also be obtained as a
particular case.

IV. MODIFIED IAM: DISPERSIVE DERIVATION
FOR EQUAL MASSES

A. Pole contribution to the standard derivation

The derivation of the modified IAM from dispersion
theory follows that in Sec. II up to Eq. (7), but keeping
the pole contributions, which, by evaluating the corre-
sponding residues, read

 PC�1=t2� �
1

t02�s2�

�
1

s� s2
�

1

z0 � s2

�
; (17)

 

PC�t4=t
2
2� �

t4�s2�

t02�s2�
2

�
1

�s� s2�
2 �

1

�z0 � s2�
2

�

�
t04�s2�

t02�s2�
2

�
1

s� s2
�

1

z0 � s2

�
; (18)

 PC�1=t� �
1

t0�sA�

�
1

s� sA
�

1

z0 � sA

�
; (19)

where we have assumed a single zero in t�sA�, as the
presence of the 1=�s� sA� factor in PC�1=t� shows.
As we have discussed above, and as is detailed in
the Appendix, by expanding chirally �PC�1=t2� �
PC�t4=t

2
2� � PC�1=t�, the poles contribute to t�s� at higher

order, and that is why they were customarily neglected.
However, these pole contributions contain the terms
needed to have the Adler zero in the correct position. In
addition, by taking the limit s! s2, ��PC�1=t2� �
PC�t4=t

2
2�� tends to the term needed to cancel the double

zero of the IAM in s2 [see Eq. (12)], and the spurious pole
will also disappear.

In summary, the modified IAM obtained from dispersive
relations subtracted at z0, that we will denote by z0IAM,
can be written again as

 tz0IAM�s� ’
t22�s�

t2�s� � t4�s� � Az0IAM�s�
; (20)

where now

 Az0IAM�s� � AmIAM�s� �
t2�s�

2

t2�z0�
2 A

mIAM�z0�: (21)

Of course, the position of the Adler zero for the total
amplitude is not known, but since we have been working
with ChPT to one loop, we can impose the Adler zero to be
located in its one-loop position; namely, in the above
formulas, we have to replace sA ! s2 � s4 which is ob-
tained from the equation t2�s2 � s4� � t4�s2 � s4� � 0 as
explained in Sec. III. Thus, to obtain (21) we have made
use of t2�s� � t02�s2��s� s2� and chirally expanded
1=t0�sA� ’ 1=t02�s2� � t

0
4�s2�=t

0
2�s2�

2, which is perfectly jus-
tified near sA. Note that we can use the chiral expansions
around sA and s2 because we no longer expand the inverse
of the amplitudes but rather that of their derivatives, as they
appear in the residues of the pole contributions.

Note that, once again, the factor AmIAM�s� that appeared
in the previous section is present, but now there is an
additional and very similar piece that carries a z0 depen-
dence, which occurs due to our truncation of the ChPT
series when approximating the subtraction constants and
pole contributions. This additional term in Az0IAM is also
O�f�6�, but, as we will see below, as long as z0 lies within
the range where our approximations remain valid, it is

TABLE I. � and � pole positions calculated with the IAM, the
mIAM, and the z0IAM with z0 � sth.

Method � pole � pole

IAM 443:71� i217:58 724:2� i216:2
mIAM 443:68� i217:56 725:3� i216:3
z0IAM, z0 � sth 443:82� i216:99 727:7� i210:0
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numerically small not only in the physical region but also
below threshold. Therefore, this term can be dropped
without spoiling the right chiral behavior of the amplitude
in the subthreshold region, obtaining again the mIAM in
Sec. III, which, for the moment, we have justified only
numerically.

Furthermore, it is tempting to take the z0 ! 1 limit in
Eq. (21) and recover the mIAM of the previous section by
noting that the second term in Eq. (21) vanishes in that
limit. However, this is just a formal justification of our
naive derivation since we required the subtraction point z0

to remain in the low-energy applicability region of ChPT.
Nevertheless, we will see in the next section that there is an
alternative dispersive derivation of the mIAM, which is
somewhat different from the standard dispersive derivation
since it requires subtractions at the Adler zero of each
function.

B. Subtraction at the Adler zeros

The way to derive Eq. (16) from dispersive theory is to
make the subtractions at the place where we already have a
pole. Note, however, that 1=t has its pole in the Adler zero
at sA whereas t4=t22 has its pole at s2, so that we have to
write
 

1

t�s�
� �

s� sA
�

Z
RC
dz

��z�
�z� sA��z� s�

� LC�1=t�

� PC�1=t�; (22)

 

t4�s�

t2�s�
2 �

s� s2

�

Z
RC
dz

��z�
�z� s2��z� s�

� LC�t4=t22�

� PC�t4=t
2
2�; (23)

where, for brevity, we have already used the elastic unitar-
ity condition Eq. (5). As usual, we will approximate
LC�1=t� ’ �LC�t4=t

2
2�, since that is the result of the chiral

expansion at low energies where the integral is weighted.
In the above relations, the pole contributions PC�1=t� and
PC�t4=t22� now come from a double and a triple pole,
respectively, and read

 PC�1=t� �
1

t0�sA��s� sA�
�

t00�sA�

2t0�sA�2
; (24)

 PC�t4=t
2
2� �

t4�s2�

t02�s2�
2�s� s2�

2 �
t04�s2�

t02�s2�
2�s� s2�

�
t004 �s2�

2t02�s2�
2 : (25)

In addition, it is important to remark that these pole con-
tributions diverge either on s2 or sA, so that for s ’ s2 or
s ’ sA they are, by far, the dominant contributions, since at
the same time the right and left cut terms tend to zero and
therefore become negligible.

Outside that region, the other terms become relevant and
the difference with our previous derivations is that now we
also approximate the 1=t integral term over the right cut by
using �s� sA�=�z� sA� ’ �s� s2�=�z� s2�, which is its
LO chiral expansion. This is a remarkably good approxi-
mation for the dispersion relation as long as z is sufficiently
far from s2 and sA, which is indeed the case for the right cut
integral. Of course, the 1=t right cut term should vanish at
sA and now it does not, but, as we have just commented, the
pole contribution diverges precisely at sA and thus is
largely dominant over the integral, which therefore can
be completely neglected.

Once again, we simply add Eqs. (22) and (23) to obtain
the mIAM equation
 

1

tmIAM�s�
� �

t4�s�

t2�s�2
�

t4�s2�

t02�s2�
2�s� s2�

2 �
t04�s2�

t02�s2�
2�s� s2�

�
1

t0�sA��s� sA�
; (26)

where, in the pole contributions, we have used that

 �
t00�sA�

2t0�sA�2
�

t004 �s2�

2t02�s2�
2 � O�f�2�; (27)

which, once again, can be safely neglected since it corre-
spond to the chiral expansion at very low energies.

Finally, if we evaluate perturbatively

 

1

t0�sA�
’

1

t02�s2�
�
t04�s2�

t02�s2�
2 �O�f

�2�; (28)

and add 0 to Eq. (26) written as 0 � 1=t2�s� �
1=�t02�s2��s� s2��, we reobtain Eq. (11) with A�s� given
by Eq. (16); i.e., we recover our naive derivation of the
modified IAM by choosing the subtraction points at the
Adler zeros.

Note, however, that in contrast to the derivation where
we used an arbitrary z0, now all subtractions have been
performed in the very low-energy region so that chiral
expansions for pole terms are well justified within ChPT.
The price to pay is that in the right cut integral terms we
have approximated sA by s2, which is irrelevant in the
Adler zero region since the pole contributions dominate
there, and a remarkably good approximation in the physi-
cal and resonance regions. Of course, we have still used
exact elastic unitarity in the integrands over the physical
cut, which ensures that the modified IAM satisfies exact
elastic unitarity.

V. MODIFIED IAM: UNEQUAL MASSES.

When dealing with unequal masses, as in the �K scat-
tering case that we will use for reference, in addition to the
left and right cuts, there is also a circular cut centered at

s � 0 with radius
��������������������
m2
K �m

2
�

q
that contributes to the dis-

persion relation. This circular cut lies in the low-energy
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region within the applicability range of ChPT, and thus, as
we do with the left cut, we will approximate the inverse
amplitude by its ChPT series to fourth order. Taking into
account that t2�s� has no cuts, we will have CC�1=t� �
�CC�t4=t22�, where CC stands for the circular cut contri-
bution. This is the same approximation used before for the
left cut, and therefore we obtain the same IAM dispersive
derivation. Hence, there is still the same problem with
Adler zeros and spurious poles.

The solution given in previous sections works similarly
well for the I � 3=2 and J � 0 partial wave. However, for
the I � 1=2, J � 0 �K scattering channel, complications
arise due to the form of the LO partial wave t2�s�which has
two zeros instead of one.

 t2�s� � �
5�s� s2���s� s2��

128�fs
; (29)

with s2��
1
5�m

2
K�m

2
��2

����������������������������������������������
4m4

K�7m2
Km

2
��4m4

�

q
� whose

values are s2� � 0:24 GeV2, and s2� � �0:13 GeV2. In
particular, this means that, contrary to the previous cases,
t00�s2�� � 0, which complicates the derivation of a modi-
fied IAM. Nevertheless, once again we have found, for this
special case of the I � 1=2, J � 0 channel, a naive and two
dispersive derivations, that we detail next.

A. Naive derivation, I � 1=2, J � 0 channel

Following Sec. III, we define 1=tmIAM � 1=tIAM �
AmIAM�s�=t22�s� with AmIAM�s� an analytic function, at least
outside the real axis, and real for real s to preserve the
unitarity and analytic properties of the original amplitude.
Next we expand 1=tIAM in Laurent series around s � s2�,
taking into account that now t002 �s� � 0, obtaining
 

1

tIAM�s�
� �

t4�s2�

t02�s2��
2�s� s2��

2 �
t02�s2�� � t

0
4�s2��

t02�s2��
2�s� s2��

�
t4�s2��t002 �s2��

t02�s2��
3�s� s2��

�O�s� s2��
0: (30)

As in Sec. III we subtract the pole at s2� and add a pole at
sA to the inverse amplitude, and the constant in the sA pole
term is calculated perturbatively in order to match the
chiral expansion at low energies. Note that, following our
previous arguments, we do not need to subtract the s2�

pole, since Imt4 � 0 on the LC, so that no spurious pole
will appear in that region. Proceeding then as in Sec. III, we

now get

 AmIAM�s� �
t2�s�2

t02�s2��
2

�
t4�s2��

�s� s2��
2 �

�s2� � sA�
�s� s2���s� sA�

�

�
t02�s2�� � t

0
4�s2�� �

t4�s2��t002 �s2��

t02�s2��

��
:

(31)

Then, Eq. (11) with AmIAM�s� above unitarizes the I �
1=2, J � 0 channel and has an Adler zero of the correct
chiral order and has no spurious pole. Let us remark that
the above AmIAM�s� is a generalization also valid for the
equal mass case, since it is reduced to the AmIAM�s� we
already obtained in Eq. (16) when t002 �s2�� � 0.

Apart from this naive formal derivation we can follow a
dispersive approach, detailed next, in which we make use
of analyticity and the ChPT series is only used within its
applicability region.

B. Dispersive derivation at z0, I � 1=2, J � 0 channel

The derivation follows exactly that of Sec. II A, but now,
due to the additional zero, s2�, of t2, which lies on the
negative axis, we cannot simply write, as usually done,R
LC Disct4=t

2
2 � 2i

R
LC Imt4=t

2
2, nor

R
LC Disc1=t2 � 0,

where Discf � f�x� i�� � f�x� i�� with real x. This
zero also modifies the form of the dispersion relation for
1=t2, that now reads
 

1

t2�s�
�

1

t2�z0�
� PC��1=t2� � PC��1=t2�;

PC��1=t2� �
1

t02�s2��

�
1

s� s2�
�

1

z0 � s2�

�
:

(32)

Following the same steps as in Sec. II A, we approximate
1=t on the left cut by its chiral expansion, but now taking
into account that, as mentioned above,R
LC dzDisc�1=t2�z�� � 0, i.e.

 LC�1=t� �
s� z0

2�i

Z
LC
dz

Disc1=t�z�
�z� s��z� z0�

’
s� z0

2�i

Z
LC
dz

Disc�1=t2�z� � t4�z�=t2�z�
2�

�z� s��z� z0�
;

(33)

where we now get �LC�t4=t22� as before, and a new term
coming from 1=t2,

 

s� z0

2�i

Z
LC
dz

Disc1=t2�z�
�z� s��z� z0�

�
s� z0

2�i

Z
LC
dz
�1=t2�z� i�� � 1=t2�z� i���

�z� s��z� z0�

� ��s� z0�
Z
LC
dz
�z� s2��=t2�z�
�z� s��z� z0�

��z� s2�� �
1

t02�s2��

�
1

s� s2�
�

1

z0 � s2�

�
(34)

which is equal to PC��1=t2�, so they will cancel in the expression for 1=t. Thus we again obtain Eq. (7), but now the
explicit expression for PC�t4=t22� at s � s2� is different from Eq. (18) because t002 �s� � 0,
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 PC�t4=t
2
2� �

t4�s2��

t02�s2��
2

�
1

�s� s2��
2 �

1

�z0 � s2��
2

�
�

�
t04�s2��

t02�s2��
2 �

t4�s2��t002 �s2��

t02�s2��
3

��
1

s� s2�
�

1

z0 � s2�

�
: (35)

Finally, we get

 tz0IAM�s� �
t2�s�

2

t2�s� � t4�s� � A
z0IAM�s�

; (36)

with

 Az0IAM�s� � t22�s���PC��1=t2� � PC�t4=t
2
2� � PC�1=t��;

(37)

where, again, we evaluate 1=t0�sA� in PC�1=t� perturba-
tively, obtaining for A�s�

 Az0IAM�s� � AmIAM�s� �
t2�s�2

t2�z0�
2 A

mIAM�z0�: (38)

Formally, this looks the same as Eq. (21) but now AmIAM�s�
is of a more general form. Indeed, we obtain again
AmIAM�s� plus a term depending on z0, which is also
O�f�6�. Nevertheless we will see that, as long as z0 re-
mains in the range of validity of the approximations, the

latter is numerically small not only in the physical region
but also in the subthreshold region, so that it can be
neglected to obtain again the result from the naive deriva-
tion, thus justifying numerically the mIAM and the IAM.

However, a derivation of the mIAM that differs from the
standard one, since subtractions are made at the Adler
zeros, is also possible for the unequal mass case, and we
detail it next.

C. Dispersive derivation subtracting at the Adler zeros,
I � 1=2, J � 0 channel

The derivation follows closely that in Sec. IV B, but now
we will have extra terms (not negligible in the chiral
expansion) coming from Disc1=t2 in the left cut when sA
is expanded around s2. In addition, the expressions for
the pole contributions are more complicated because
t002 �s� � 0.

We again expand the left cut to NLO:

 LC�1=t� ’
s� s2� � s4

2�i

Z
LC
dz

Disc�1=t2�z� � t4�z�=t2�z�
2�

�z� s��z� s2��

�
1�

s4

z� s2�

�

’ �LC�t4=t22� �
s� s2�

t0�s2���s� s2���s2� � s2��
�

t4�s2��

t02�s2��t
0
2�s2���s2� � s2��

2 ; (39)

where we obtain �LC�t4=t22� plus two extra terms. The pole contributions now read

 PC�1=t� �
1

t0�sA��s� sA�
�

t00�sA�

2t0�sA�
2 ; (40)

 

PC�t4=t
2
2� �

t4�s2��

t02�s2��
2�s� s2��

2 �

�
t04�s2��

t02�s2��
2 �

t4�s2��t002 �s2��

t02�s2��
3

�
1

s� s2�
�

t004 �s2��

2t02�s2��
2 �

t04�s2��t002 �s2��

t02�s2��
3 �

3t4�s2��t002 �s2��
2

4t02�s2��
4

�
t4�s2��t0002 �s2��

3t02�s2��
3 ; (41)

where all terms in PC�1=t�will be evaluated perturbatively
excepting 1=�s� sA�, which is the one that gives the
needed pole at sA to the inverse amplitude. Then, adding
the dispersion relations for 1=t and t4=t22, and using that

 

1

t2�s�
�

1

t02�s2���s� s2��
�

s� s2�

t02�s2���s� s2���s2� � s2��

�
t002 �s2��

2t02�s2��
2 ; (42)

we thus arrive at AmIAM in Eq. (31) plus O�f�6� terms that
can be safely neglected since they all correspond to the
chiral expansion at very low energies.

VI. NUMERICAL RESULTS: COMPARISON
BETWEEN DIFFERENT APPROACHES AND z0

SENSITIVITY

In this section we compare numerically the IAM with
the modified methods we have derived. The precise values
of the ChPT low-energy constants are not relevant for what
we want to show here. Just for illustration, we take for
SU(2) ChPT the typical values of lr3 � 0:82� 10�3,
lr4 � 6:2� 10�3 from the second reference in [1], at a
renormalization scale 	 � 770 MeV. The values
lr1 � �3:7� 10�3, lr2 � 5:0� 10�3 have been obtained
from an IAM fit to �� scattering data. In particular, we
have used the same data sets used in the IAM fits of the
second reference in [8], but we have updated the contro-
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versial f0�600� channel by using the choice of data ex-
plained in [19] consistent with forward dispersion relations
and Roy equations as shown in [20]. For �K scattering we
have chosen the central values of the SU�3� ChPT con-
stants of the IAM I set in the last reference of [8].

We show in Fig. 2 several plots comparing the IAM and
mIAM results for the modulus of different partial waves of
�� and �K elastic scattering in the scalar channel. We see
that both methods are indistinguishable in the physical
region, shown in the left column, and only differ in the
Adler zero region which is shown in detail in the right
column. Note that the IAM has a spurious pole and a
double zero in that region, whereas the mIAM does not
have such a pole and its zero is simple.

We have also calculated the � and � pole positions with
the IAM and the mIAM, obtaining the same pole position
within �1 MeV, as shown in Table I.

In the derivation of the z0IAM, we have an arbitrary
subtraction point z0 � s2; sA, but we only know how to
calculate the amplitude at z0 if we can use the chiral
expansion 1=t�z0� ’ 1=t2�z0� � t4�z0�=t2�z0�

2, which is
only valid if z0 lies in the low-energy region. Also, due
to t2 having a zero at s2, the above expansion is a very bad
approximation if z0 is near s2. We can estimate how close

z0 could be to sA and s2 by looking at the expansion

 

1

t�z0�
’

1

t2�z0�
�
t4�z0�

t2�z0�
2 ’

1

t2�z0�

�
1�

s4

�z0 � s2�
� 
 
 


�
;

(43)

where we have only made explicit the s4=�z0 � s2� pole
term. Hence, for our approximations to remain valid, we
have to make sure that the ratio s4=�z0 � s2� is small
enough. Thus, we show in Fig. 3 the contour plots in the
energy and z0 plane of the relative difference between the
mIAM and the z0IAM,

 � �
jtmIAM�s� � tz0IAM�s�j

1
2 jt

mIAM�s� � tz0IAM�s�j
; (44)

as a function of the energy and z0. We show two contour
lines corresponding to � � 10% and 5%. We see that, as
long as the choice of z0 is sufficiently far from sA and s2

(the white lines in the plots) the result of the z0IAM differs
little from the mIAM. In particular, we have checked that,
in order to obtain a relative difference less than 10% and
5%, in the worst case, which is the I � 2, J � 0 wave, we
have to be sure that our choice of subtraction point z0

makes the ratio of js4=�z0 � s2�j< 3% and 2%, respec-
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FIG. 3. Contour plots of the relative differences between the mIAM and the z0IAM in the �s; z0� plane. We see that, as long as z0 lies
in the low-energy region but sufficiently far from the Adler zeros sA and s2 (white lines), the differences become small for all partial
waves. Note that for z0 � sth (black line) the differences for all cases are less than 5%.

GÓMEZ NICOLA, PELÁEZ, AND RÍOS PHYSICAL REVIEW D 77, 056006 (2008)

056006-10



tively. Let us recall that an error of 5% is a very precise
result in this context, since it is much less than the un-
certainties (mostly of systematic origin) of the existing
data on meson-meson scattering. For instance, just the
isospin violation effects, that are usually not taken into
account by these experiments, can be estimated at the level
of 2% or 3%, and these are added to further statistical and
very big systematic uncertainties.

In summary, the choice of subtraction constant has little
relevance for the z0IAM, as long as it lies in a place where
the NLO chiral expansion of the inverse amplitude is a
good approximation to the inverse itself. In such case, the
z0IAM results are very close to those of the mIAM, and
therefore to those of the standard IAM in the physical
region. This provides a strong check of the stability and
robustness of the standard NLO IAM results.

We have also shown in the plots of Fig. 3 a line at
z0 � sth, which is a very natural choice of subtraction
point, since the subtraction constants can then be written
in terms of threshold parameters, which are well studied in
the literature. We see that, with this choice of z0, in all
cases we have a relative difference � which is less than 5%.
Actually, it is even smaller, as seen in Fig. 4, where we plot
in detail the results for � subtracting at z0 � sth, and we
see that for��we have a relative difference less than 1.5%
for all energies and less than 4% for the �K case.

VII. DISCUSSION AND SUMMARY

In this work we have shown that it is possible to modify
slightly the one-channel IAM so that, also in the scalar
channel, it provides a reliable description of the unitarized
partial wave amplitudes below threshold. In particular, we
have shown that it is possible to obtain a modified IAM that
has the Adler zeros located in the same place as the
effective chiral expansion up to the desired order, that these
zeros are single, and that the spurious poles below thresh-
old that occur in the standard IAM are no longer present.

The IAM has been most frequently used at NLO, where
the chiral expansion of a partial wave is written as t�s� �
t2�s� � t4�s� � . . . . For such a case the simplest modifica-
tion to the IAM that we have found can be written as

follows:

 tmIAM�s� �
t22�s�

t2�s� � t4�s� � A
mIAM�s�

; (45)

where
 

AmIAM�s� �
t2�s�2

t02�s2�
2

�
t4�s2�

�s� s2�
2 �

�s2 � sA�
�s� s2��s� sA�

�

�
t02�s2� � t04�s2� �

t4�s2�t
00
2 �s2�

t02�s2�

��
; (46)

and in order to have the Adler zero exactly on its NLO
position, we set sA ! s2 � s4 where s2 � O�m2� and s4 ’
O�m4=f2� are the Adler zeros at LO and its NLO correc-
tion, respectively. That is, they are obtained from t2�s2� �
0 and t2�s2 � s4� � t4�s2 � s4� � 0. In general, s4 should
be calculated numerically. The above formula is valid for
the elastic scattering of both equal and unequal meson
masses. However, in most of the cases, like �� scattering,
the formula simplifies further since t002 �s2� � 0 and t2�s� �
t02�s2��s� s2�. Note also that the AmIAM�s� piece counts
as next to next to leading order (NNLO) in the chiral
expansion, and for that reason it was neglected in the
standard IAM derivation, which is recovered by setting
AmIAM�s� ! 0 and remains valid in the physical region,
since there AmIAM�s� is indeed negligible.

In Sec. III we have given a ‘‘naive’’ formal derivation of
AmIAM�s� by adding, in a rather ad hoc way, the pieces
needed to fix the Adler zero and spurious pole problems
without spoiling unitarity and the chiral symmetry expan-
sion. However, in Secs. IV and V we have shown that the
mIAM formulas above can be derived by using the analytic
properties of amplitudes in the form of dispersion relations
and imposing elastic unitarity on the right cut. The use of
the chiral effective expansion is well justified to calculate
the subtraction constants and pole contributions to the
dispersion relations, and is also used to approximate con-
tributions from other cuts. In particular, the integral over
the left cut is calculated to NLO, which is a good approxi-
mation in the low-energy region that dominates the inte-
gral. Therefore, there are no model dependencies but just
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FIG. 4. Relative differences �, with z0 � sth, for �� (left panel) and �K scattering (right panel). Note that the differences are less
than 1.5% and 4%, respectively.
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approximations within the effective theory up to a given
order. This allows for a straightforward and systematic
extension of the elastic IAM and modified IAM to higher
orders.

A usual criticism to unitarization methods is their arbi-
trariness, but we have shown here that the IAM, modified
or not, is not just unitarizing, but also imposing a stringent
analytic structure on the amplitudes, something that leaves
little room for such arbitrariness: the choice of the sub-
traction points. However, if the chiral effective expansion
is to be used to calculate the amplitude at the subtraction
points or pole positions, the subtraction points should lie,
first of all, in the low-energy region. But, in addition, since
a dispersion relation is written for the inverse amplitude,
that subtraction point should also lie far from the Adler
zero. In this work, we have explicitly shown that, as long as
those two constraints are satisfied, the choice of subtraction
point has a very small numerical effect on the resulting
amplitude. Moreover, we have shown that the results of the
standard IAM in the physical axis and resonance region in
the complex plane remain unchanged when using the
modified IAM and are extremely stable under different
choices of subtraction points.

In summary, we have presented a slightly modified
inverse amplitude method for the elastic case, that has
the Adler zeros in the correct position and of the correct
order and no spurious poles in that region. We have shown
that the results already obtained with the standard IAM are
robust in the physical region, where it can still be used
safely, but the new modifications allow for the study of the
subthreshold region that is of interest in problems like
thermal restoration of chiral symmetry [11] or the quark
mass dependence [16] of resonances in meson-meson
scattering.
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APPENDIX: CHIRAL COUNTING OF POLE
CONTRIBUTIONS

Next we will check by explicit calculation that the total
pole contribution counts as O�f�6� in the amplitude. We
will do it for the more general case where t002 �s� � 0. In
particular, we only need to expand PC�1=t�. First note that

 

t0�sA� � t02�s2 � s4 � 
 
 
� � t04�s2 � s4 � 
 
 
� �O�f�6�

� t02�s2� � t002 �s2�s4 � t04�s2� �O�f�6�: (A1)

With this

 

1

t0�sA�
�

1

t02�s2�
�
t04�s2�

t02�s2�
2 �

t002 �s2�t4�s2�

t02�s2�
3 �O�f�2�: (A2)

We also have to expand 1=�s� sA�:

 

1

s� sA
�

1

s� s2
�

s4

�s� s2�
2 �O�f

�4�

�
1

s� s2
�

t4�s2�

t02�s2��s� s2�
2 �O�f

�4�; (A3)

and similarly for 1=�z0 � sA�, where we have taken into
account that t02�s2�s4 � �t4�s2� �O�f�6�. Hence, we find
that

 

PC�1=t� �
1

t0�sA�

�
1

s� sA
�

1

s� s2

�

�
1

t02�s2�

�
1

s� s2
�

1

z0 � s2

�

�
t4�s2�

t02�s2�
2

�
1

�s� s2�
2 �

1

�z0 � s2�
2

�

�

�
t04�s2�

t02�s2�
2 �

t002 �s2�t4�s2�

t02�s2�
3

��
1

s� s2
�

1

z0 � s2

�

�O�f�2� � PC�1=t2� � PC�t4=t
2
2� �O�f

�2�;

(A4)

so the total pole contribution PC�1=t� � PC�1=t2� �
PC�t4=t

2
2� � O�f�2�, which yields an O�f�6� contribution

to t�s�.
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