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Abstract

The position value, introduced by Meessen (1988), is a solution concept for cooperative
games in which the value assigned to a player depends on the value of the connections or links
he has with other players. This concept has been studied by Borm et al. (1992) and characterised
by Slikker (2005). In this paper, we analyse the position value from the point of view of the
typical properties of a measure of centrality in a social network. We extend the analysis already
developed in Gómez et al. (2003) for the Myerson centrality measure, where the symmetric ef-
fect on the centralities of the end nodes of an added or removed edge is a fundamental part
of its characterisation. However, the Position centrality measure, unlike the Myerson centrality
measure, responds in a more versatile way to such addition or elimination. After studying the
aforementioned properties, we will focus on the analysis and characterisation of the Position
attachment centrality given by the position value when the underlying game is the attachment
game. Some comparisons are made with the attachment centrality introduced by Skibski et al.
(2019).

Keywords: social networks, centrality measures, coalitional games, position value.

1 Introduction

The important role of social networks nowadays is irrefutable, as evidenced by their emergence in
a large variety of fields of application. Social networks play a fundamental role in sociology, de-
scribing the existing relations among the members of a society. They allow to detect key members
(Borgatti, 2003), communities (Girvan and Newman, 2002), to analyse rumour spreading (Zubi-
aga et al., 2018), etc. But, social networks are no longer limited to the pure sociological range, they
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are also currently used in other fields which, at first sight, seem far removed. Among many areas
of application, we can mention wildfire spreading (Hajian et al., 2016), the analysis of the genome
and proteome of a living being (Horvath, 2011; Estrada, 2006), as well as the analysis of systemic
problems of banking contagion (Gofman, 2017).

Formally, a social network is often modeled as a graph, with nodes representing agents and
edges or arcs representing communication channels or relationships between them. This struc-
ture can be enriched with additional information such as the degree of relationship or influence
between agents, or the weight of each agent, etc.

One of the most important tasks in the analysis of social networks is the evaluation of which
nodes or agents are more important, relevant, powerful or influential. This evaluation can be
used to select the main agents on which to focus our attention to explain or condition the network
dynamics. To do this, the importance of each agent needs to be assessed, or at least the agents
need to be ranked according to their importance, based on the notion of centrality. However,
although the centrality of a node or agent in a social network is an intuitive concept, it is not
unambiguously defined, it is multifaceted, since it depends on what exactly is being measured.

Attempting to answer the question of what all centrality measures must have in common is
difficult. As early as 1966, Sabidussi considered a set of criteria that a proper centrality measure
should satisfy, but his criteria “eliminate most known measures of centrality” and ”they do not
actually attempt to explain what centrality is” (see Borgatti and Everett, 2006).

The first idea to specify the meaning of centrality came from considering the position of the
node compared to others in simple networks. For example, in a star graph, it seems that the
most important node is the hub, because it is the node with the highest degree, it is the closest
node to the rest of the nodes, and it is essential to establish the connection between two different
nodes. Freeman (1979) reduced the existing centrality measures to these three basic concepts and
provided three basic centrality measures: Degree, Closeness and Betweenness to capture each of
them. These centrality measures reach their maximum values for the hub of a star. This property
is considered to be the defining characteristic of true centrality measures. Subsequently, other
centrality measures have been introduced. Borgatti and Everett (2006) extended Freeman’s work.
They conducted a graph-theoretic review of centrality measures and classified them along four
key dimensions. Mirroring Freeman’s classification, they also considered degree-like measures
(e.g. Katz, 1953; Bonacich, 1987), closeness-like measures (e.g. Friedkin’s immediate effects centrality,
1991), and betweenness-like measures (e.g. Newman, 2005). Apart from these contributions, other
attempts have been made to propose necessary properties or even axiomatic characterisations of
a centrality measure, such as Garg (2009), Landherr et al. (2010), Boldi and Vigna (2014), and
Bandyopadhyay et al. (2017). Recently, Bloch et al. (2021) have proposed a different taxonomy of
centrality measures based on different statistics associated with each node that capture its position
in the network. In conclusion, apart from some basic properties, there is no general agreement on
what properties should characterise a centrality measure.

The analysis of centrality has also been approached from the theory of cooperative games.
Tarkowski et al. (2017) provide a survey of the main game-theoretic approaches to measuring
centrality in social networks.

The basic idea is to understand the social network as a joint project in which different agents
with defined interests cooperate in order to obtain benefits from their interaction with other
agents in the network. Within this approach, game theory has enriched the existing measures
by explicitly taking into account the functionality or different purposes that the social network
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can have. Some of these centrality measures integrate the topological information provided by
the network with a coalitional game that models the interests or benefits that the nodes (players)
can obtain as a result of their interactions (see, for example, Grofman and Owen (1982), Gómez
et al., 2003, del Pozo et al., 2011). Other approaches define a cooperative game directly from the
network (Narayanam and Narahari (2010), Lindelauf et al. (2013), Musegaas et al. (2016)). In any
case, usually, but not always, the game-theoretic centrality measure is obtained as the Shapley
value (Shapley, 1953) of the proposed coalitional game.

Moreover, studying the centrality of nodes in a social network based on a value of an associ-
ated game allows us to use the properties of the game-theoretic value to derive properties of the
centrality measure. For example, in Gómez et al. (2003), desiderata of key centrality properties is
given and checked for the Myerson value based family of centrality measures they introduce. Fol-
lowing this approach, Skibski et al. (2018) and Skibski et al. (2019) give axiomatic characterisations
of some game-theoretic centrality measures.

In this paper we propose to explore the possibilities of using the position value (Messens,
1988) to define a family of centrality measures. In this approach, the centrality measure of a
node depends on the importance attributed to its links. This family, under certain conditions,
satisfies typical properties of a centrality measure that have already been demonstrated for the
Myerson centrality family. However, unlike Myerson’s centrality, Position centrality escapes from
the property of fairness to account for different effects of the addition of an edge over its end nodes
according to their role in the previous social network.

Both game-theoretic centrality measures, the Myerson and Position centrality families, are
complex measures that account for more than one of the key dimensions considered by Borgatti
and Everett (2006). Specifically, Myerson and Position centralities can be rewritten to obtain more
information about their behaviour as a centrality measure by decomposing their values into two
parts that measure two different abilities of each member in the social network: its ability to
connect and its ability to intermediate1 (see Gómez et al. (2003) and Gómez et al. (2004)). That
is, both measures are simultaneously radial and medial in terms of nodal involvement in the walk
structure of the graph. However, they differ in the properties of the walks they measure. Myerson
centrality only counts walks that are minimal with respect to nodes, whereas Position centrality
only counts walks that are minimal with respect to edges. Moreover, each of these walks can be
properly evaluated according to the goal achieved by the members they connect, by considering
a game that captures the functionality of the social network.

In addition to the study of the general properties of the family of Position centralities, we
consider in particular the Position attachment centrality. For this measure, we study some spe-
cific properties and also characterised it following the work of Skibski et al. (2019) on Myerson
attachment centrality.

The remainder of this paper is structured as follows. In Section 1, we review related work. In
Section 2, we formally define some aspects of cooperative games, graphs and Myerson centrality.
In Section 3, we propose Position centrality and some of its properties as a centrality measure.
In Section 4, we present some results on the behaviour of the Position centrality measure when a
new edge is added to the graph. The special case of Position attachment centrality is analysed and
characterised in Section 5. Finally, the last section concludes the paper. We have also included an

1In fact, Manuel et al. (2020, 2022) analysed each of these two parts separately, which they called the within-group
Position value (WG-Myerson, WG-Position values) and the between-group Position value (BG-Myerson, BG-Position values), from
a game-theoretic point of view. They obtained axiomatisations for all Position and Myerson involved values.
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appendix with the proof of some results in order to facilitate the reading of the paper.

2 Preliminaries

First, we summarise the basic elements concerning the both topics we deal with, coalitional games
and graphs. Then, we review the concept of Myerson centrality (Owen, 1986; Gómez et al., 2003).

2.1 Coalitional games

A coalitional game with transferable utility (TU-game) is a pair (N, v), where N = {1, 2, 3, ..., n} is
the set of players and v, the characteristic function, is a map v : 2N → R, with v (∅) = 0. For each
coalition, S ⊆ N, v(S) represents the transferable utility that S can guarantee to obtain whenever
its members cooperate. Let GN be the class of all coalitional games over player set N. A TU-game
(N, v) is superadditive if v(S ∪ T) ≥ v (S) + v (T), for all S, T ⊆ N, S ∩ T = ∅, and it is convex
if v(S ∪ T) + v(S ∩ T) ≥ v(S) + v(T), for all S, T ⊆ N. A TU-game (N, v) is symmetric if for all
S ⊆ N, v (S) = f (s), where s represents the cardinality of S. It is zero-normalized if v({i}) = 0,
for all i ∈ N. In this paper we mainly consider zero-normalized symmetric and superadditive
games. We will denote by GN

0 the subclass of these games in GN .

For each S ∈ 2N\∅ , the unanimity game uS ∈ GN is defined by

uS (T) =

{
1 if S ⊆ T,
0 otherwise.

It is well-known that
{

uS
∣∣S ∈ 2N\∅

}
is a basis of the vector space GN , and each v ∈ GN can be

expressed as follows:

v = ∑
S∈2N\∅

∆v (S) uS,

where {∆S(v)}∅ 6=S⊆N is the set of the Harsanyi dividends of v (Harsanyi, 1959), which are given
by

∆S(v) = ∑
T⊆S

(−1)s−t v (T) , (1)

being s = |S| and t = |T|.
A value ϕ for TU games is a function that assigns to each game (N, v) ∈ GN a vector ϕ(N, v) ∈

RN , where ϕi(N, v) ∈ R represents the value of player i, i ∈ N. Shapley (1953) defines his value
as follows:

φi(N, v) = ∑
S⊆N
i/∈S

s!(n− s− 1)!
n!

(
v(S ∪ {i})− v(S)

)
, i ∈ N. (2)

An alternative expression for the Shapley value in terms of the Harsanyi dividends is:

φi (N, v) = ∑
i∈S∈2N\ ∅

∆S(v)
s

. (3)
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2.2 Graphs

Let Γ = (N, E), be an undirected graph without loops , where N is the set of n nodes and E is
the set of edges, E ⊆ {{i, j}/i, j ∈ N, i 6= j}. Let GN denotes the class of all undirected graphs
without loops or parallel arcs with node set N. For all i ∈ N we denote Ei := {e ∈ E | i ∈ e},
E[S] := {e ∈ E | e ⊆ S}, for all S ⊆ N, and N[L] = {i ∈ N | i ∈ ⋃e∈L e}, for all L ⊆ E. The subgraph
induced by S ⊆ N is ΓS := (S, E[S]), whereas the subgraph induced by L ⊆ E is ΓL := (N[L], L).

A graph is connected if every pair i, j ∈ N of its nodes is connected directly or indirectly, i.e.,
if there is a path in the graph from node i to node j; otherwise, the graph is not connected. The
relation of connectivity induces a partition of the node set N into connected components, two nodes
being in the same connected component if they are connected. Let us denote the collection of con-
nected components of the graph Γ byK(Γ). Moreover, for the sake of simplicity,K(S) denotes the
collection of connected components of the graph ΓS, and analogously K(L) denotes the collection
of connected components of the graph ΓL, for all S ⊆ N, and all L ⊆ E, respectively. For every
node i ∈ N, Ki(Γ) ∈ K(Γ), denotes the connected component of the graph Γ to which node i be-
longs. Analogously, if i ∈ S, or Ei ∩ L 6= ∅, Ki(S) ∈ K(S), andKi(L) ∈ K(L) denote, respectively,
the connected component of the corresponding graph to which node i belongs. A cutvertex is a
vertex whose removal increases the number of connected components, and a cutedge is an edge
whose end nodes are both cutvertices. Let D (L) denote the set of cutedges of L.

2.3 Myerson centrality

As we have mentioned before, since the pioneer contribution of Grofman and Owen in 1982,
several approaches to measure centrality of nodes in a social network that rely on cooperative TU
games have been proposed in the literature. The goal of game theoretic centrality measures is to
take into account the purpose of the social network. To be specific, considering an appropriate TU
game (N, v) to describe the functionality (i.e. the purpose) of the social network (to send messages,
to develop a joint project, etc.), the Myerson centrality is defined as the Myerson value (1977) of the
game (N, v) taking into account the cooperation structure given by the social network Γ = (N, E),
that integrates both kinds of information: the structure and the goal of relations.

We follow the Myerson centrality approach, i.e., to define a family of game-theoretic centrality
measures by means of integrating the information about the benefit of each group S ⊆ N given
by the game with the restrictions in the communication between players modelled by the graph
(N, E), and selecting a particular value for games with restricted cooperation as a centrality mea-
sure. In this context, the triplet (N, v, E) is called a communication situation.

Formally, a centrality measure for social networks with symmetric relations is an assignation
which associates to each graph Γ = (N, E) ∈ GN a vector σ(Γ) ∈ RN , where σi(Γ) ∈ R represents
the centrality of node i, i ∈ N.

Owen (1986) and Gómez et al. (2003) introduce a family of centrality measures that arises of
considering symmetric TU games to describe the functionality, and relying on the Myerson value
(1977) of the graph restricted game.

That is, given a symmetric game (N, v), the Myerson centrality of nodes in the social network
Γ = (N, E) is measured by their Shapley values in the graph-restricted game (N, vE) (Myerson,
1977) that represents the economic possibilities of the agents when the available communication
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possibilities are taken into account:

vE(S) = ∑
T∈K(S)

v(T), S ⊆ N.

Thus, σi(Γ) := µi(N, v, E) := φi(N, vE), for all node i ∈ N, where µ(N, v, E) denotes the Myerson
value of the game (N, v) given the cooperation structure Γ = (N, E).

For instance, Owen (1986) and Gómez et al. (2003) consider some TU games modeling inter-
esting functionalities such as sending messages between pairs of individuals (messages game), to
develop a joint project (overhead game), or the ability to form groups of two or more individuals
(conferences game).

• Messages game: (N, vm), that counts the number of messages that can be sent between pairs
of individuals (in both ways), vm(S) = s(s− 1), for all ∅ 6= S ⊆ N.

• Overhead game on N: (N, vo), that accounts for the general cost that any set of players should
pay to perform an action, with vo(S) = −1, for all ∅ 6= S ⊆ N.

• Attachment game: In this paper, we will consider the attachment game (N, va), given by
va(S) = 2(s − 1), for all ∅ 6= S ⊆ N, and introduced in Skibski et al. (2019), which is
proportional to the zero-normalisation of the overhead game.2

• Attachment-Messages game: (N, vam); vam(S) = s2 + s− 2, for all ∅ 6= S ⊆ N.

• Conferences game: (N, vc), that counts the number of subsets in S with cardinal greater than
1, and thus vc(S) = 2s − s− 1, for all S ⊆ N.

Example 1. The following example shows the impact of the functionality of the social network
on the centralities of each node.

7

6

8

4

5

9

1 2 3 12

11

13

15

10

14

Figure 1: Example 1

When the purpose of the network is to send messages (see Table1), node 2, which intermedi-
ates between the two subsocieties S1 = {1, 4, 5, 6, 7, 8, 9} and S2 = {3, 10, 11, 12, 13, 14, 15} is the
second kind of node more central, whereas this second position is occupied by the hubs of S1

and S2, nodes 4 and 15 respectively, when the purpose is to get nodes to develop a joint project.
Moreover, the differences between intermediary nodes 1, 2 and 3, and the remaining ones are
considerably greater for the messages centrality.

The Myerson value is characterized by means of two properties:

2The zero-normalisation of the overhead game , v0
o(S) = s− 1, is called pure overhead game on N in Owen (1986).
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Nodes Messages game Attachment game
1,3 29.7 (14.16%) 2.5 (8.8%)
2 28.9 (13.72%) 2.0 (7.1%)

4, 15 10.5 (5.01%) 2.1 (7.6%)
5,9,10,14 11.5 (5.49%) 1.8 (6.4%)
6,8,11,13 9.1 (4.34%) 1.6 (5.8%)

7, 12 9.0 (4.28%) 1.6 (5.8%)

Table 1: Myerson centralities

• Component efficiency: For every game (N, v) ∈ GN , and any social network Γ = (N, E) ∈ GN ,
it is verified:

∑
i∈S

µi(N, v, E) = v(S), for all S ∈ K(Γ). (4)

• Fairness: For every game (N, v) ∈ GN , and any social network Γ = (N, E) ∈ GN , it is
verified:

µi(N, v, E)− µi(N, v, E \ {e}) = µj(N, v, E)− µj(N, v, E \ {e}), for all e = {i, j} ∈ E. (5)

Component efficiency, which assures that all the value generated by a connected component
is allocated to its nodes, allows for comparing centralities in different graph configurations that
preserve the set of connected components (under the same functionality). Fairness, which is in
fact the crucial property of the Myerson value, implies a symmetric effect of removing and edge
over its both ends.

3 Position centrality

Similarly to the Myerson centrality, we propose an alternative family of centrality measures using
the position value (Messens, 1988), in which the value assigned to a player depends on the value
of the connections or links he has with other players. We will restrict to the subclass of zero-
normalised symmetric and supperadditive games in order to obtain a minimum centrality equal
to zero for every isolated node.

Our main motivation is to escape from Myerson’s property of fairness when the end nodes of
the added edge have very different situations in the original social network in order to understand
how the importance attributed to the links of a node affects its centrality measure. This is the case,
for instance, of nodes 2 and 15 in Example 1. It seems no reasonable that adding an edge between
them affects both nodes in the same way.

First, we recall the definition of the position value restricted to this subclass of games in which
the family of position centrality measures is based. Then, we prove that the proposed family
satisfies the most typical desirable properties of a centrality measure. In Section 4 a thorough
analysis of how the addition of an edge affects the position centrality of the nodes is made.

Let CSN
0 denotes the class of all communication situations (N, v, E) with player set N, being

(N, v) ∈ GN
0 a zero-normalised symmetric and supperadditive TU game, and Γ = (N, E) ∈ GN
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an undirected communication graph without loops or parallel edges. Let (N, v, E) ∈ CSN
0 , then

the link game (E, wv) corresponding to (N, v, E) (cf. Borm et al. 1992), which is played between
edges instead of nodes, is defined as follows:

wv(L) = ∑
C∈K(L)

v(C), ∀ L ⊆ E, (6)

That is, the sum of the values of the maximal groups than can be formed when the only available
connections are those of coalition L.

Then, the Position value π : CSN
0 −→ Rn is given by

πi(N, v, E) =
1
2 ∑

e∈Ei

φe(E, wv), ∀ i ∈ N, (7)

where φ(E, wv) denotes the Shapley value of the link game.

The position value also admits an alternative expression in terms of the Harsanyi dividends
of the link game (see Slikker, 2005), which is in fact very useful in order to prove many of the
properties of the proposed family of centrality measures.

πi (N, v, E) = ∑
e∈Ei

1
2 ∑

L⊆E
e∈L

λL (E, wv)

l
= ∑

L⊆E

1
2

λL (E, wv)
li
l

, for all i ∈ N, (8)

where Li = L ∩ Ei, and being λL (E, wv), the Harsanyi dividends of the link game (E, wv).

Slikker (2005) shows that λL (E, wv) = λL(wv), that is, it does not depend on E ⊇ L. This
facilitates the comparison of two communication situations that differ only in the underlying
graph. Moreover, in the sequel, we will work with λL(wv) without any reference to the specific
graph (N, E).

3.1 Properties of the Position centrality

In this context, we shall understand by Position centrality the position value of a given communica-
tion situation (N, v, E) ∈ CSN

0 . In the sequel f (·) will denote the function defining the symmetric
game (N, v). Now, we prove that the proposed family of Position centrality measures satisfies
some of the most typical desirable properties of a centrality measure (see Gómez et al., 2003). In
particular, it attains its maximum value for the hub of a star, which is according to Freeman (1979),
a defining characteristic of proper centrality measures. Some proofs of these results are based on
several lemmas establishing interesting properties of the Harsanyi dividends of the link game,
which are compiled in the Appendix.

First, we prove that Position centrality is a non-negative centrality measure.

Proposition 1. Let (N, v, E) ∈ CSN
0 , then πi(N, v, E) ≥ 0, for all i ∈ N.

Proof. The proof strongly depends on the superadditivity of the game. By definition

πi (N, v, E) =
1
2 ∑

e∈Ei

φe(E, wv),
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where

φe(E, wv) = ∑
L⊆E\{e}

l!(|E| − l − 1)!
|E|! (wv(L ∪ {e})− wv(L)) , with e = {i, j}.

Let K(L) be the set of connected components. W.l.o.g. suppose that K(L) has only two elements,
i.e.,K(L) = {T1, T2} and i ∈ T1. To examine the sign of wv (L ∪ {e})−wv (L), we need to consider
the following three cases:

1. j ∈ T1. Then clearly wv (L ∪ {e})− wv (L) = 0.

2. j ∈ T2. Then we have:

wv (L ∪ {e})− wv (L) = v (N[T1 ∪ T2])− v (N[T1])− v (N[T2]) ≥ 0.

by superadditivity of v.

3. j /∈ T1 ∪ T2 . Then:

wv (L ∪ {e})− wv (L) = wv(E[T1] ∪ {e})− wv(E[T1]) = v(T1 ∪ {j})− v(T1) ≥ 0,

since (N, v) is supperaditive and zero-normalised.

Next, we show that it verifies the property of Locality, which establishes that the centrality of
a node depends only on the connected component to which it belongs. Moreover, it also satisfies
Component efficiency. The following lemma, which generalises the analogous result of Borm et al.
(1992) for cycle-free graphs, is needed.

Lemma 1. Let (N, v) be a TU game and Γ = (N, E) ∈ GN . For every subset L ⊆ E such that ΓL is not
connected it holds λL (wv) = 0.

Proposition 2. Position centrality verifies Locality, i.e. for every communication situation (N, v, E) ∈
CSN

0 , and every node i ∈ N it holds:

πi(N, v, E) = πi(Ki(E), vi, E[Ki(E)]),

where vi is the restriction of v to Ki(E).

Proof. Let K(E) be the set of connected components in the graph (N, E) and i ∈ N. W.l.o.g.
suppose that K(E) has only two elements, i.e., K(E) = {Ki(E), T}. We are going to calculate
πi (N, v, E) using (8):

πi (N, v, E) = ∑
L⊆E

1
2

λL (wv)
li
l

.
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By Lemma 1, last expression can be decomposed as follows:

πi (N, v, E) = ∑
L⊆E[Ki(E)]

1
2

λL (wv)
li
l
+ ∑

L⊆E[T]

1
2

λL (wv)
li
l

.

Since Li ⊆ E [Ki(E)], it follows that Li ∩ E [T] = ∅. Thus,

πi (N, v, E) = ∑
L⊆E[Ki(E)]

1
2

λL (wv)
li
l
= ∑

L⊆E[Ki(E)]

1
2

λL (wvi )
li
l

,

which completes the proof.

Proposition 3. Position centrality verifies Component efficiency.

Proof. Component efficiency is proven by Borm et al. (1992).

Note that Component efficiency, restricted to the class CSN
0 , allows for comparing centralities

in different graph configurations that preserve the number of connected components and their
cardinalities (under the same functionality f ).

The following propositions show results about the minimal and the maximal position central-
ity of a node. Isolated nodes have minimal position centrality, which equals 0, whereas maximal
centrality is attained by the hub of a star.

Proposition 4. Let i0 ∈ N be an isolated node in the graph (N, E), then

πi0(N, v, E) = 0 ≤ πi(N, v′, E′),

for all i ∈ N, and every (N, v, E), (N, v′, E′) ∈ CSN
0 .

Proof. Let i0 ∈ N be an isolated node in (N, E), then it follows from (8) and the fact that li0 = 0
for all L ⊆ E, that:

πi0 (N, v, E) = ∑
L⊆E

1
2

λL (wv)
li0
l
= 0, for all (N, v) ∈ GN

0 ,

which is the minimum position centrality of a node, taking into account Proposition 1.

Proposition 5. Let (N, v) ∈ GN
0 . If (N, E∗) ∈ GN is the star with n nodes where node 1 is the hub, then

for all connected graph (N, E) ∈ GN , and for all i ∈ N is verified:

π1(N, v, E∗) ≥ πi(N, v, E).

Proof. Let (N, E∗) ∈ GN be the star with n nodes. By symmetry of the Shapley value we have
that φe(E∗, wv) = f (n)

n−1 for any e in E∗ and therefore π1 (N, v, E∗) = f (n)
2 . Now suppose that there

exists a graph (N, E) and a node i ∈ N, such that

π1 (N, v, E∗) < πi (N, v, E) ,

10



then

πi (N, v, E) >
f (n)

2
.

On the other hand, by definition

πi (N, v, E) =
1
2 ∑

e∈Ei

φe(E, wv), ∀ i ∈ N

and consequently

∑
e∈E

φe(E, wv) > f (n) ,

which contradicts the efficiency property of Shapley value.

We will now examine in Propositions 6, 7 and 8 some properties related to a chain. The Posi-
tion centrality of an end node of a chain increases with the length of the chain. For a given chain,
the Position centrality of its nodes is maximal for the middle nodes and decreases symmetrically
from the middle to the end nodes. Moreover, proposition 4 is reinforced, the minimal Position
centrality in connected graphs is attained by the end nodes of a chain.

First, some general results about the Harsanyi dividends of the link game when the underlying
graph contains no cycles are given.

Lemma 2. Let (N, v) ∈ GN
0 and Γ = (N, E) ∈ GN . If Γ is cycle-free, then for all ∅ 6= L ⊆ E with ΓL

connected, the Harsanyi dividends of the link game can be calculated in the following way:

λL (wv) = F (l + 1, l − dL) , (9)

where dL = |D (L)|, being F(s, r) = ∑r
k=0 (−1)k (r

k) f (s− k), for s, r ∈N and s ≥ r.

Note that expression (9) only depends on l, dL and f . Thus, all subset of edges that form
a cycle-free graphs with equal number of edges and extreme points (number of edges minus
number of cutedges) have the same dividend for any fixed game. For example, the three graphs
in Figure 2 have the same Harsanyi dividend since they have 7 edges and 4 extreme points. Then,
in all cases we have:

λL (wv) = F(8, 4) = f (8)− 4 f (7) + 6 f (6)− 4 f (5) + f (4) .

Last lemma will allow us to simplify the calculation of dividends for chains, compare the div-
idends of trees with l edges but with different structures, and determine the sign of the dividend
under additional conditions for the game.

Lemma 3. Let f be a real function such that f (k) (x) ≥ 0 in [1,+∞), for k = 0, 1, ..., n, then the function
F(s, r) is decreasing in the second argument for every fixed s ∈N, with r ∈N, s ≥ r.

Next corollary follows straightforwardly from Lemmas 2 and 3.

Corollary 1. Let (N, v) ∈ GN
0 and Γ = (N, E) ∈ GN . If Γ is cycle-free, f ∈ Cn (R) and f (k) (x) ≥ 0

in [1,+∞), for k = 0, 1, ..., n, then, for every pair of subsets L, L′ ⊆ E, such that l = l′ and dL ≤ dL′ it

11



Figure 2: Graphs with the same Harsanyi dividend

holds:

λL(wv) ≤ λL′(w
v)

In particular, if f satisfies the required conditions of Corollary 3, the star is the structure with
the lowest Harsanyi dividend, whereas the chain is the one with the highest value, among all the
n-node trees. That is:

λL∗ (wv) ≤ λL (wv) ≤ λLC (wv) ,

where L∗ and LC are two sets of edges that form a star and a chain, respectively, and being L a set
of edges forming a tree with |L∗| = |L| =

∣∣LC
∣∣.

With respect to the sign of the dividends, if the graph Γ is a chain with l edges, taking into
account (9), the Harsanyi dividends are given by:

λL (wv) = F(l + 1, 2) = f (l + 1)− 2 f (l) + f (l − 1) ,

which are always non negative if the game (N, v) is convex. However, for general cycle-free
graphs, convexity of f must be strengthened in order to assure non negative dividends.

Corollary 2. Let (N, v) ∈ GN
0 and Γ = (N, E) ∈ GN . If Γ is cycle-free, f ∈ Cn (R) and f (k) (x) ≥ 0 in

[1,+∞), for k = 0, 1, . . . , n, then λL (wv) ≥ 0, for all ∅ 6= L ⊆ E.

Proposition 6. Let (N, v) ∈ GN
0 be convex. Let us suppose that (Nk, EC

k ) is a chain with nk nodes ordered
in the natural way. If n1 < n2, then:

π1

(
N1, v, EC

1

)
≤ π1

(
N2, v, EC

2

)
.

Proof. We will show that the result is true for n2 = n1 + 1. Applying (8), we have that:

π1

(
Nk, v, EC

k

)
=

1
2 ∑

L⊆EC
k

λL (wv)

l
=

1
2 ∑

l<nk

F(l + 1, 2)
l

,

12



where the second equality follows from Lemma 1, since only the subset of edges L that form a
chain have a non-zero Harsanyi dividend, and Lemma 2.

Consequently

π1

(
N2, v, EC

2

)
− π1

(
N1, v, EC

1

)
=

1
2

(
∑

l<n2

F(l + 1, 2)
l

− ∑
l<n1

F(l + 1, 2)
l

)
=

1
2

λEC
2
(wv)

n2 − 1
.

Finally, the result follows since λEC
2
(wv) ≥ 0 as a consequence of the convexity of v.

Proposition 7. If (N, v) ∈ GN
0 is convex and (N, EC) is a chain with n nodes numbered in the natural

way, then for 1 ≤ i ≤ n/2 :

πi

(
N, v, EC

)
≤ πi+1

(
N, v, EC

)
.

Proof. Since EC remains fixed along the proof we will write φe(EC, wV) simply as φe(wV).

Let ei = {i, i + 1}, i = 1, . . . , n− 1. By definition:

πi

(
N, v, EC

)
=

1
2
(
φei−1(w

v) + φei (w
v)
)

and

πi+1

(
N, v, EC

)
=

1
2
(
φei (w

v) + φei+1(w
v)
)

.

Now, we prove a recursive formula for the Shapley values of the edges:

φej(w
v) = φej−1(w

v) +
n−j

∑
k=j

F (k + 1, 2)
k

, for 1 ≤ j ≤ n/2, (10)

assuming as initial condition φe0(w
v) := 0.

For j = 1, φe1(w
v) can be derived from expression (8), taking into account that only the subsets

L such that ΓL is a chain have a non-zero dividend. Thus,

φe1(w
v) = ∑

e1∈L⊆EC

λL (wv)

l
=

n−1

∑
k=1

F (k + 1, 2)
k

.

For j ≥ 2, note that there is one coalition of size 1 containing ej, two coalitions of size 2, three of
size 3, and so on increasing successively up to size j; from this point, for all s ≤ n− j there are
always exactly j coalitions of size s. Finally, for all n− j < s ≤ n− 1, the number of coalitions of
size s decreases by 1 starting at n− j + 1. Therefore:

φej(w
v) =

j

∑
k=1

k
F (k + 1, 2)

k
+ j

n−j

∑
k=j+1

F (k + 1, 2)
k

+
n−1

∑
k=n−j+1

(n− k)
F (k + 1, 2)

k
.
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Then, it can be obtained directly that

φej(w
v)− φej−1(w

v) =
n−j

∑
k=j

F (k + 1, 2)
k

≥ 0,

since (N, v) is convex. Thus,

πi+1

(
N, v, EC

)
− πi

(
N, v, EC

)
=

1
2
(φei+1(w

v)− φei (w
v) + φei (w

v)− φei−1(w
v)) ≥ 0.

Proposition 8. If (N, v) ∈ GN
0 is convex and (N, EC) is the chain with n nodes, where node 1 is an end

node, then for all connected graphs (N, E) ∈ GN
0 , and for all i ∈ N, it holds:

π1(N, v, EC) ≤ πi(N, v, E)

Proof. The proof follows the same lines as the proof of Proposition 3.5 in Gómez et al. (2003).

4 Adding an edge

In the analysis of the family of centrality measures derived form the use of the Myerson value
(Gómez et al., 2003) the symmetrical behaviour with respect to the addition or elimination of
an edge is a fundamental characteristic. However, the position centrality measure, unlike the
Myerson centrality measure, responds in a more versatile way to such addition or elimination.

Next, we show some situations in which adding an edge benefits both end nodes, although
not necessarily to the same amount. However, examples in which one of the end nodes becomes
worse can be found.

Proposition 9. Let (N, v) ∈ GN
0 be a convex game, and let (N1, E1) and (N2, E2) be two not connected

graphs, with N = N1 ∪ N2. If a bridge b = {i0, j0}, with i0 ∈ N1 and j0 ∈ N2 is added, then it holds:

πi(Nk, vk, Ek) = πi(N, v, E) ≤ πi(N, v, E ∪ {b}), (11)

for all node i ∈ Nk, k = 1, 2, where vk denotes the restriction of v to Nk, k = 1, 2, and E = E1 ∪ E2.

Proof. To shorten notation, we write w instead of (E, wv), and w+ instead of (E ∪ {b}, wv).

Note that the first equality of (11) holds since the position value verifies Locality (Proposition
2). We will prove the second inequality, i.e., πi(N, v, E) ≤ πi(N, v, E ∪ {b}), for all i ∈ N, by
verifying that φe(w) ≤ φe(w+) for all e ∈ E.

Let e ∈ E be an original edge, then it holds

φe(w) := ∑
L⊆E\{e}

l!(m− l − 1)!
m!

(
w(L ∪ {e})− w(L)

)
, (12)
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and

φe(w+) = ∑
L⊆E\{e}

{ l!(m− l)!
(m + 1)!

(
w+(L ∪ {e})− w+(L)

)
+

(l + 1)!(m− l − 1)!
(m + 1)!

(
w+(L ∪ {e, b})− w+(L ∪ {b})

)}
, (13)

where m = |E|.
Let e ∈ E1 (the same argument applies to e ∈ E2) and L ⊆ E. Clearly,

w+(L ∪ {e})− w+(L) = w(L ∪ {e})− w(L), ∀ L ⊆ E. (14)

Now, we will prove that

w+(L ∪ {e, b})− w+(L ∪ {b}) ≥ w(L ∪ {e})− w(L). (15)

We will distinguish two cases:

(i) If i0 /∈ Ki(L ∪ {e}) = Kj((L ∪ {e}), with e = {i, j} (note that then e /∈ Ei0 ), then Ki(L ∪
{e}) = Ki(L ∪ {e, b}) and thus w+(L ∪ {e, b})− w+(L ∪ {b}) = w(L ∪ {e})− w(L).

(ii) If i0 ∈ Ki(L ∪ {e}), then K(L ∪ {e, b}) equals K(L ∪ {e}) replacing Ki0(L ∪ {e}) = Ki(L ∪
{e}) by Ki(L ∪ {e}) ∪Rj0(L), where

Rj0(L) =

{j0}, if L ∩ Ej0 = ∅,

Kj0(L) = Kj0(L ∪ {e}), otherwise.

Note that the former component Kj0(L) is replaced by Ki0(L ∪ {e}) if L ∩ Ej0 6= ∅. Analo-
gously, K(L ∪ {b}) equals K(L) replacing Ki0(L) by Ki0(L) ∪Rj0(L). Thus,

(
w+(L ∪ {e, b})− w+(L ∪ {b})

)
−
(

w(L ∪ {e})− w(L)
)
=(

v
(
Ki(L ∪ {e}) ∪Rj0(L)

)
− v
(
Ki(L) ∪Rj0(L)

))
−
(

v
(
Ki(L ∪ {e})

)
− v
(
Ki(L)

))
,

which is non-negative since (N, v) is convex, and thus (15) is verified.

Therefore, taking into account (14) and (15) into expression (13) it follows that φe(w+) ≥
φe(w), for all e ∈ E. Thus, for all i 6= i0, j0

πi(N, v, E ∪ {b}) :=
1
2 ∑

e∈Ei

φe(w+) ≥ 1
2 ∑

e∈Ei

φe(w) := πi(N, v, E).

For the end nodes i0, j0 of the bridge, there is a common contribution given by 1
2 φb(w+) ≥ 0

(see Proposition 1 proof), and -contrary to the Myerson value- an independent increasing that
depends on how the network structure newly added to each original independent component
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affects to the original connections of i0 and j0. To be specific,

πi0(N, v, E ∪ {b})− πi0(N, v, E) =
1
2

φb(w+) +
1
2 ∑

e∈Ei0

(φe(w+)− φe(w)),

πj0(N, v, E ∪ {b})− πj0(N, v, E) =
1
2

φb(w+) +
1
2 ∑

e∈Ej0

(φe(w+)− φe(w)).

Example 2. Adding the bridge b = {1, 4} to the not connected social network depicted in Figure
3 increases the centrality of every node. However, the gain of each node varies, if for instance the
messages game is considered, node 4 gains more position centrality than node 1 (6.5 versus 5.6),
which is even more pronounced in relative terms (433.3% versus 280%).

1

2 3

4 5 6

Figure 3: Not connected societies example.

For the specific case in which the two not connected graphs are two stars, and asking for some
extra property of the functionality, the previous result can be strengthened.

Proposition 10. Let (N, v) ∈ GN
0 defined by a function f (·) ∈ Cn(R) such that f (k)(x) ≥ 0 in [1,+∞),

for all k = 1, . . . , n. Let (N1, E∗1 ) and (N2, E∗2 ) be two not connected stars of k1 and k2 leaves respectively,
with k1 ≤ k2, and being N = N1 ∪ N2 and E = E∗1 ∪ E∗2 . If a bridge b = {c1, c2} between the two hubs
c1 ∈ N1 and c2 ∈ N2 is added, then it holds that:

1. πc1(N, v, E ∪ {b})− πc1(N, v, E) ≤ πc2(N, v, E ∪ {b})− πc2(N, v, E),

2. πi(N, v, E ∪ {b})− πi(N, v, E) ≥ πj(N, v, E ∪ {b})− πj(N, v, E), for every pair of leaves i ∈
N1 \ c1, j ∈ N2 \ c2.

Proof. Let us first prove that the hub of the larger star gains more position value than the hub of
the smaller one.

From expression (8) of the Position value in terms of the Harsanyi dividends of the link game
proposed in Slikker (2005), it follows that:

∆πc1 = πc1(N, v, E ∪ {b})− πc1(N, v, E) =
1
2 ∑

L⊆E
λL∪{b}

lc1 + 1
l + 1

, (16)

∆πc2 = πc2(N, v, E ∪ {b})− πc2(N, v, E) =
1
2 ∑

L⊆E
λL∪{b}

lc2 + 1
l + 1

, (17)

where, throughout the proof, λL denote the Harsanyi dividends of the link game wv. Note that
the addends with non-zero dividend in the above two sums correspond to coalitions L of the
form:
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(s0) L = {b},

(s1) L = T1 ∪ {b}, with ∅ 6= T1 ⊆ E∗1 ,

(s2) L = T2 ∪ {b}, with ∅ 6= T2 ⊆ E∗2 ,

(s3) L = T1 ∪ T2 ∪ {b}, with ∅ 6= T1 ⊆ E∗1 and ∅ 6= T2 ⊆ E∗2 .

In the unique type (s0) addend, the dividend λ{b} appears in both increments (16) and (17) with
the same coefficient 1, whereas for the remaining types, the dividends appear with different co-
efficients. However, taking into account Lemma 2, λT1∪{b} = λT2∪{b}, whenever |T1| = t1 =

t2 = |T2|, all type (s1) addends have an equal one of type (s2) with T2 s.t. t2 ≤ k1. Analogously,
λT1∪T2∪{b} = λT′1∪T′2∪{b}, if t1 + t2 = t′1 + t′2, and therefore, all type (s3) addends for T2 with t2 ≤ k1

appear in both increments. Thus, their difference ∆πc2 − ∆πc1 is given by:

1
2 ∑

∅ 6=T2⊆E∗2
t2>k1

λT2∪{b}

(
1− 1

t2 + 1

)
+

1
2 ∑

∅ 6=T1⊆E∗1
T2⊆E∗2 ,t2>k1

λT1∪T2∪{b}

( t2 + 1
t1 + t2 + 1

− t1 + 1
t1 + t2 + 1

)
,

which is non-negative by Corollary 2, and taking into account that t2 > k1 ≥ t1.

With respect to the second statement, let i ∈ N1\c1 and j ∈ N2\c2, be any pair of leaves. Anal-
ogously, we must consider the following sort of non-zero addends in their respective increments:

(s1) L = T1 ∪ {{i, c1}, b},T1 ⊆ E∗1 \ {i, c1},

(s2) L = T2 ∪ {{j, c2}, b},T2 ⊆ E∗2 \ {j, c2},

(s3i) L = T1 ∪ T2 ∪ {{i, c1}, b}, T1 ⊆ E∗1 \ {i, c1} and ∅ 6= T2 ⊆ E∗2 \ {j, c2},

(s3j) L = T1 ∪ T2 ∪ {{j, c2}, b}, ∅ 6= T1 ⊆ E∗1 \ {i, c1} and T2 ⊆ E∗2 \ {j, c2},

(s4) L = T1 ∪ T2 ∪ {{i, c1}, {j, c2}, b}, with T1 ⊆ E∗1 \ {i, c1} and T2 ⊆ E∗2 \ {j, c2}.

In this case, comparing both increments is more subtle because it requires to compare the divi-
dends of two different structures:

c1 1

j

c2

2

Type (s2) L, with l = 4, dL = 0, λL = F(5, 4)

i

c1 1

j

c2

Type (s3i) L, with l = 4, dL = 1, λL = F(5, 3)

Type (s1) addends appear only in ∆πi, whereas type (s2) addends appear only in ∆πj. Again,
by Lemma 2, every type (s1) addend in ∆πi has an equal one of type (s2) with T2 s.t. t2 ≤ k1 in
∆πj. With respect to type (s3i) and (s3j) addends, both of them appear in both increments with the
exception of the extreme cases: T1 = ∅ in type (s3i) addends and T2 = ∅ in type (s3j) addends,
which again also coincide whenever t2 ≤ k1 − 1 in the extreme case T1 = ∅. Type (s4) addends
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appear in both cases. Therefore, it follows from expression (9) that:

∆πi − ∆πj =
1
2 ∑

T2⊆E∗2\{j,c2}
t2>k1−1

(
F(t2 + 3, t2 + 1)− F(t2 + 3, t2 + 2)

) 1
t2 + 2

.

Thus, taking into account that F(s, ·) is a decreasing function (see Lemma 3), ∆πi − ∆πj ≥ 0,
which completes the proof.

Example 3. In transportation networks, the stars, which are known as hub-and-spokes networks,
are specially important. In this framework, measuring the effect of connecting two different hubs
over the centralities of each of the original hubs as well as over the centralities of each of their
satellites is a relevant question. Note, that the Position centrality allows us to measure also the
importance of the bridge. In this example, we will illustrate the previous result when the func-
tionality of the social network is given by the messages game, which models trips between two
nodes of the network.

Nodes ∆ Myerson ∆ Position
Hub-k1-star 1 + 2

3 (k1 + k2) +
k1k2

2 1 + k1 +
k2
2 + 2k1k2

3
Hub-k2-star 1 + 2

3 (k1 + k2) +
k1k2

2 1 + k2 +
k1
2 + 2k1k2

3
Satellites-k1-star 2

3 + k2
2

1
2 + k2

3
Satellites-k2-star 2

3 + k1
2

1
2 + k1

3

Table 2: Centralities increments when connecting two hubs.

The hub of the larger transportation network gains more Position centrality than the other
hub. Moreover, the greater the discrepancy in size between the two networks, the greater the
difference in Position centrality gain, which is equal to k2−k1

2 . In terms of satellites, the effect is the
opposite. The satellites of the smaller transportation network gain more Position centrality than
the other satellites because they are now able to connect to more nodes via the other hub. Again,
the greater the discrepancy in size between the two networks, the greater the difference in Posi-
tion centrality gain, which is k2−k1

3 . Note that Myerson centrality treats both hubs symmetrically,
and furthermore they gain less Myerson centrality overall than Position centrality. The effect on
satellite Myerson centrality is similar to position centrality, but in this case satellites gain more
Myerson than position centrality.

Additionally, Position centrality allows us to measure the power of connections. The Shapley
value of the bridge connecting the two hubs is 2 + k1 + k2 +

2k1k2
3 , which increases with the size

of the original hub and spokes transportation networks. As all connections increase their values,
it is interesting to compare the value of the bridge in relation to the value of the remaining con-
nections. The ratios of φb over φe1 and over φe2 , where e1 and e2 are spokes of the k1-star and the
k2-star, respectively, are given by:

φb
φe1

=
k2(1 + 2

3 k1) + k1 + 2
2
3 k2 + k1 + 2

,
φb
φe2

=
k2(1 + 2

3 k1) + k1 + 2

k2 +
2
3 k1 + 2

.

Note that even in the limit case with k2 → ∞ the above ratios are greater than one: lim
k2→∞

φb
φe1

=
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3
2
+ k1, and lim

k2→∞

φb
φe2

= 1 +
2
3

k1, i.e. the value of the bridge remains being strictly greater than

the value of any of the original spokes.

5 The Position attachment centrality

In this section we analyse the particular case in which the symmetric game is the attachment game
(Skibski et al., 2019) given by va(S) = fa(s) = 2(s− 1), ∀ S ⊂ N. Our proposal is to study some
specific properties of the Position attachment centrality defined, for each graph Γ = (N, E) as the
position value of the communication situation (N, va, E), which we will denote as PA(Γ).

The attachment game was used by Skibski et al. (2019) to define the graph Attachment cen-
trality, A(Γ), as the Myerson value of the attachment game when coalition formation is restricted
by a graph Γ. The Attachment centrality of node i ∈ N is the expected number of components
created by the removal of i (multiplied by 2 for normalisation purposes) when the nodes are re-
moved from the graph one by one in a random order. The difference between the two centrality
measures is due to a difference in the measurement of marginal contributions (see Slikker, 2005).
In the case of Attachment centrality, the removal of a node implies the deletion of all its edges
simultaneously. On the contrary, when considering the position value, are the edges of the graph
which are removed one by one in a random order, and the Position attachment Centrality of i ∈ N
is measured by the sum of the expected number of components created by the removal of each of
the edges incident in i.

When the graph is a tree, the position value coincides with the Myerson value (see Borm et
al. 1992), and moreover PAi(Γ) = Ai(Γ) = di, where di is the degree of node i in Γ. However,
in the general case where the graph contains some cycles, the two centrality measures differ in
how end nodes are affected when an edge is removed (or added). According to Attachment
centrality, the addition of an edge improves both nodes equally. On the contrary, according to
the Position attachment centrality, both nodes are also improved (or at least not worsened), but
not necessarily to the same extent. Both attachment centralities also differ on the nodes that are
worsened. Formally, let us introduce the concept of intermediary which is relevant for Position
centrality.

Let ∅ 6= R ⊆ N, a subgraph ΓL = (N[L], L) is called a minimal R-connecting edge-induced
subgraph (Dietzenbacher et al., 2017) if it connects R and any ΓL′ with L′ ( L does not connect R.
LetMΓ(R) denotes the collection of minimal R-connecting edge-induced subgraphs and EΓ(R) =
{LR

1 , . . . , LR
qR
} denotes the collection of coalitions of edges which define them. We consider the set

of intermediaries of R, which we will denote by BetΓ(R) ⊆ N \ R, as the set of nodes in some
minimal R-connecting edge-induced subgraph. This is:

BetΓ(R) := {i ∈ N \ R | Ei ∩
(
∪qR

j=1LR
j

)
6= ∅}. (18)

Note that (N, va) ∈ GN
0 . Moreover, it is convex. On the contrary, we will show that the

corresponding link game (N, wa) is concave.

Lemma 4. Let Γ = (N, E) be a given graph, then the marginal contributions in the link game (E, wa)
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defined over the communication situation (N, va, E) are given by:

wa(L ∪ {e})− wa(L) =

0, if there exists a cycle in L ∪ {e} containing edge e,

2, otherwise,

for every e ∈ E, and every L ⊆ E \ {e}.

Proof. Let e = {i, j} ∈ E, and L ⊆ E \ {e}. If there exists a cycle in L ∪ {e} containing edge e then
K(L) = K(L ∪ {e}) and thus wa(L ∪ {e}) = wa(L).

Otherwise, there exists Si, Sj ∈ K(L) with i ∈ Si and j ∈ Sj and Si 6= Sj. Thus,

wa(L) = va(Si) + va(Sj) + ∑
S∈K(L)
S 6=Si ,Sj

va(S),

wa(L ∪ {e}) = va(Si ∪ Sj) + ∑
S∈K(L)
S 6=Si ,Sj

va(S).

Thus, wa(L ∪ {e})− wa(L) = va(Si ∪ Sj)− va(Si)− va(Sj) = 2.

Note that the marginal contributions in the link game are non-increasing, and thus (E, wa) is
concave for every given graph Γ = (N, E).

Proposition 11. Let Γ = (N, E) be a given graph. If an edge e0 = (i0, j0), between two nodes i0, j0 ∈ N
is added. Then, it holds that:

(i) PAi(N, E ∪ {e0}) ≤ PAi(N, E), for every intermediary node i ∈ Bet({i0, j0}).

(ii) PAi(N, E ∪ {e0}) = PAi(N, E), for every node i /∈ Bet({i0, j0}) ∪ {i0, j0}

(iii) PAi0(N, E ∪ {e0}) ≥ PAi0(N, E) and PAj0(N, E ∪ {e0}) ≥ PAj0(N, E)

Proof. Taking into account Lemma 4, for every edge e ∈ E, and every L ⊆ E \ {e}, it is verified:

wa(L ∪ {e, e0})− wa(L ∪ {e0}) ≤ wa(L ∪ {e})− wa(L). (19)

Then, for every edge e ∈ E it holds:

φe(E ∪ {e0}, wa) = ∑
L⊆E\{e}

l!(m− l)!
(m + 1)!

(wa(L ∪ {e})− wa(L))+

+
(l + 1)!(m− l − 1)!

(m + 1)!
(wa(L ∪ {e, e0})− wa(L ∪ {e0})) ≤

≤ ∑
L⊆E\{e}

l!(m− l − 1)!
m!

(wa(L ∪ {e})− wa(L)) = φe(E, wa),

where m = |E|. Therefore, PAi(N, E∪ {e0}) ≤ PAi(N, E), for every node i ∈ N \ {i0, j0}, since for
the end nodes i0, j0, 1

2 φe0(E ∪ {e0}, wa) must be added.

Now, in order to prove statement (ii), let e /∈ ∪q0
j=1L0

j , being EΓ({i0, j0}) = {L0
1, . . . , L0

q0
}. Then,

there exists a cycle containing edge e in L ∪ {e, e0} if, and only if, there exists a cycle containing
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edge e in L ∪ {e}. Thus, inequality (19) is an equality for every subset L ⊆ E \ {e}, and therefore
φe(E, wa) = φe(E ∪ {e0}, wa). If i /∈ Bet({i0, j0}) ∪ {i0, j0}, then Ei(N, E ∪ {e0}) = Ei(N, E) ⊆
E \ ∪q0

j=1L0
j and therefore PAi(N, E ∪ {e0}) = PAi(N, E).

We will restrict the proof of (iii) to the case of connected graphs. Note that for not connected
graphs, two cases are possible:

1. i0 and j0 belong to different connected components. Then, since the attachment game is
convex, by Proposition 9, (iii) holds.

2. i0 and j0 belong to the same connected component, then taking into account that Position
centrality verifies Locality (see Proposition 2), we can restrict the proof to the connected
subgraph induced by their connected component.

The proof relies on the alternative characterisation of the Shapley given by Weber (1988) in
terms of all possible orders of arrival of the players to a meeting point. We will prove the inequal-
ity for i0, the same reasoning applies to j0.

Let θ ∈ Θm be a given order of the original edges in E. Then, it holds:

PAi0(N, E) =
1

2 ·m! ∑
θ∈Θm

∑
e∈Ei0

(
wa(Prede(θ) ∪ {e})− wa(Prede(θ))

)
, (20)

where Prede(θ) ⊆ E \ {e} denotes the set of edges that precede edge e in the order θ.

Now, let θ ∈ Θm be any given order of the original edges, we will prove that:

∑
e∈Ei0

(
wa(Prede(θ) ∪ {e})− wa(Prede(θ))

)
≤ (21)

∑
e∈Ei0

(
wa(Prede(θ+k ) ∪ {e})− wa(Prede(θ+k )

)
+
(
wa(Prede0(θ+k ) ∪ {e0})− wa(Prede0(θ+k )

)
, (22)

for each of the m + 1 orders of the edges in E ∪ {e0}, θ+k ∈ Θm+1, defined by means of inserting
edge e0 in every possible position k, 1 ≤ k ≤ m + 1, of the given order θ.

Making use of Lemma 4, we only need to prove that for every given order θ ∈ Θm, the number
of edges with a nonzero contribution in (21) is less or equal than the number of edges with a
nonzero contribution in (22), for every 1 ≤ k ≤ m + 1. For doing it, we will define a partition
of the collection of paths, MΓ({i0, j0}), by means of their starting edge from i0. Formally, let
Ei0(j0) ⊆ Ei0 be the collection of edges incident in i0 that form part of some of these paths in
MΓ({i0, j0}). Then, we define the partition P(e) := {P ∈ MΓ({i0, j0}) / e ∈ P}, for each e ∈
Ei0(j0).

Let θ ∈ Θm be a given order of the original edges, and let e ∈ Ei0 with wa(Prede(θ) ∪ {e})−
wa(Prede(θ)) = 2. Then:

1. For every position k > θ(e) it holds:

wa(Prede(θ) ∪ {e})− wa(Prede(θ)) = wa(Prede(θ+k ) ∪ {e})− wa(Prede(θ+k )).
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2. Analogously, if k ≤ θ(e), but e /∈ Ei0(j0), i.e. e /∈ ∪q0
j=1L0

j , then:

wa(Prede(θ) ∪ {e})− wa(Prede(θ)) = wa(Prede(θ+k ) ∪ {e})− wa(Prede(θ+k )).

3. If k ≤ θ(e) and e ∈ Ei0(j0). Then, one of the following three conditions -which are mutually
exclusive- is verified:

(c1) There exists a path in P ∈ P(e) such that P \ {e} ⊆ Prede(θ).

(c2) There exists P ∈ P(e′), e′ ∈ Ei0(j0) \ {e}, with P ⊆ Prede(θ).

(c3) None of the two previous conditions hold.

If (c1) holds, then wa(Prede(θ+k ) ∪ {e})− wa(Prede(θ+k )) = 0. However, since condition (c2)
is not true, then it was also not true when edge e0 arrived, and therefore wa(Prede0(θ+k ) ∪
{e0})−wa(Prede0(θ+k )) = 2. Thus, e0 takes the place of e in (22). Note that there is a unique
edge e in this situation per each order θ ∈ Θm.

On the other hand, if (c2) holds there exists a path from i0 to j0 in Prede(θ), and therefore the
arrival of edge e0 does not affect the marginal contribution of e. Trivially, if (c3) holds, again
the arrival of edge e0 does not affect the marginal contribution of e. Thus, in both cases, its
is verified:

wa(Prede(θ) ∪ {e})− wa(Prede(θ)) = wa(Prede(θ+k ) ∪ {e})− wa(Prede(θ+k )).

To sum up, it is satisfied:

PAi0(N, E ∪ {e0}) =
1

2 · (m + 1)! ∑
θ∈Θm+1

[(
wa(Prede0(θ) ∪ {e0})− wa(Prede0(θ)

)
+

+ ∑
e∈Ei0

(
wa(Prede(θ) ∪ {e})− wa(Prede(θ)

)]
=

1
2 · (m + 1)! ∑

θ∈Θm

m+1

∑
k=1

[(
wa(Prede0(θ+k ) ∪ {e0})− wa(Prede0(θ+k )

)
+ ∑

e∈Ei0

(
wa(Prede(θ+k ) ∪ {e})− wa(Prede(θ+k )

)]
≥

≥ 1
2 · (m + 1)! ∑

θ∈Θm
(m + 1) ∑

e∈Ei0

(
wa(Prede(θ) ∪ {e})− wa(Prede(θ))

)
= PAi0(N, E),

and statement (iii) holds.

Example 4. To analyze the difference between both centralities measures based on attachment we
consider the addition of edge {2, 15} in the graph of Example 1:
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In Table 3 are depicted the centrality variation of each node. Note that node 15 gains more
Position attachment centrality than the other end node 2 (0.56 versus 0.26), whereas both gain the
same attachment centrality. With respect to the remaining nodes, only the attachment centrality
of the bypassed node 3, and that of the intermediary adjacent nodes 10 and 14, which were in
the shortest paths between 2 and 15, is reduced. However, according to Position attachment
centrality, also nodes 11, 12 and 13, which were also potential intermediaries between 2 and 15
although but they did not appear in any shortest path, reduce their centrality. Myerson centrality
only affects to nodes in minimal paths with respect to nodes, whereas Position centrality affects
to nodes in minimal paths with respect to edges.

If we consider a local centrality measure such as degree, the addition of the edge {2, 15} affects
both end nodes equally, but if we consider a more global measure such as closeness, node 15 also
gains more closeness centrality than node 2.

Nodes ∆ Attachment ∆ Position Attachment
2 0.4 0.26
15 0.4 0.56
3 -0.6 -0.52

10,14 -0.1 -0.12
11,13 0 -0.03

12 0 -0.01
1,4,. . . ,9 0 0

Table 3: Attachment centralities increments

5.1 A characterisation of the Position attachment centrality

The characterisation of the Position attachment centrality is based on Position value (Slikker, 2005)
and attachment centrality (Skibski et al., 2019) characterisations. For this purpose, the following
axioms for a centrality measure σ are considered.

Locality Axiom

For every graph Γ = (N, E) and every node i ∈ N , the centrality of i depends solely on the
component to which i belongs, i.e. σi(Γ) = σi((Ki(Γ), E[Ki(Γ)])).

Normalisation Axiom

• σi(Γ) ∈ [0, n− 1];

• σi(Γ) = 0 when i is isolated in Γ;

• σ1(Γ∗) = n− 1 when Γ∗ is a star with n nodes and being 1 its hub.
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Gain-Loss Axiom

For every connected graph, Γ = (N, E), and every pair of nodes, i, j ∈ N , adding the edge
{i, j} /∈ E to E does not affect the sum of centralities.

Balanced link contributions Axiom

For every Γ = (N, E) and all i, j ∈ N

∑
l∈Ej

(σi(Γ)− σi(Γ− l)) = ∑
l∈Ei

(
σj(Γ)− σj(Γ− l)

)
,

where Γ− l := (N, E \ {l}).

Theorem 1. The Position attachment centrality is the unique centrality measure that satisfies Locality,
Normalisation, Gain-Loss and Balanced link contributions.

Proof. As a position value PA(Γ) satisfies Locality (proposition 2) and Balanced link contributions
(Slikker, 2005). Moreover, by proposition 3, for all connected component C ∈ K(Γ)

∑
i∈C

PAi(Γ) = 2(|C| − 1).

Then, adding a new edge to a connected component does not affect the sum of centralities of
its nodes, thus verifying Gain-Loss.

With respect to Normalisation, by proposition 5, the node hub 1 of a star of n nodes verifies
that π1(N, va, E∗) = fa(n)/2. Then, PA1 = n − 1. By proposition 4, for an isolated node k,
PAk = 0. Finally, by propositions 1 and 5, 0 ≤ PAi(Γ) ≤ n− 1, ∀i ∈ N holds.

For proving uniqueness, assume that σ(Γ) is a centrality measure that satisfies the four axioms
above. First we show that for all C ∈ K(Γ),

∑
i∈C

σi(Γ) = 2(|C| − 1).

Consider a n nodes star Γ∗, being node 1 its hub. By Normalisation σ1(Γ∗) = n − 1 and
σi(Γ∗ − {1, i}) = 0 for all i 6= 1, and from Locality and Normalisation σ1(Γ∗ − {1, i}) = n− 2 for
all i ∈ N \ {1}.

Using Balanced link contributions we will show by induction on n that σi(Γ∗) = 1 for all
i ∈ N \ {1}. For n = 3:

2σi(Γ∗)− σi(Γ∗ − li)− σi(Γ∗ − lj) = σ1(Γ∗)− σ1(Γ∗ − li) = 1

and as σi(Γ∗ − li) = 0 and σi(Γ∗ − lj) = 1, σi(Γ∗) = 1.

Assume that, σi(Γ∗) = 1 for all node i 6= 1 of a star with n− 1 nodes. Then, by Balanced link
contributions:

∑
lj∈L1

[σi(Γ∗)− σi(Γ∗ − lj)] = σ1(Γ∗)− σ1(Γ∗ − li) = 1
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But, by induction hypothesis, Locality and Normalisation σi(Γ∗ − li) = 0 and σi(Γ∗ − lj) = 1
for all j 6= i, then σi(Γ∗) = 1.

Then ∑i∈N σi(Γ∗) = 2(n− 1). Taking into account that any connected graph Γ with n nodes
can be obtained adding or removing edges from a star and Gain-Loss, we obtain that ∑i∈N σi(Γ) =
2(n− 1). Finally, by Locality, ∑i∈S σi(Γ) = 2(|S| − 1) for all connected component S ⊂ N of any
graph Γ.

Therefore, σ(Γ) verifies Component efficiency for the game f (S) = 2(|S| − 1) and Balanced
link contributions. By Slikker (2005) characterisation, σ(Γ) = PA(Γ) for all Γ.

6 Some conclusions

In this work, we have proposed a family of node centrality measures based on the evaluation
of its links using the position value. We have shown that this family, under certain conditions,
this family satisfies typical properties of a centrality measure. In particular, it verifies component
efficiency and it assigns a minimum value to the isolated nodes. It also ensures that, among all
graphs with n nodes, maximum centrality is achieved by the hub of a star and minimum centrality
is achieved by the end nodes of a chain. In the case of chain, centrality increases progressively
from the end nodes towards the median nodes.

Compared to centrality measures based on the Myerson value, our approach relaxes the fair-
ness condition, which requires that the removal/addition of a link affects equally its incident
nodes. Our proposal is thus more realistic, as proved in the case of two hub-and-spokes networks
connected by their hubs. In this particular example, we have shown that the hub of the larger
transportation network gains more position centrality than the other hub. However, we note
the limitation of our approach to determine the position centrality variation of two nodes once
a bridge is established between them in arbitrary communication situations. Concretely, it could
be interesting to describe and explain situations where one of the bridge nodes loses centrality.
In the particular case of communication situations where the game is the attachment game, it is
shown that the two incident nodes improve their centrality.

Finally, based on the work of Skibski et al. (2019) on attachment centrality, we have charac-
terised the Position attachment centrality according to four axioms: locality, normalisation, gain-
loss and balanced link contributions. It would be interesting to extend this specific analysis to
other prominent members of the family.

In order to demonstrate some of the above results, compelling properties of the Harsanyi
dividends for the link game, which are interesting in themselves, have been shown.
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Appendix

Lemma 1. Let (N, v) be a TU game and Γ = (N, E) ∈ GN . For every subset L ⊆ E such that ΓL is not
connected it holds λL (wv) = 0.

Proof. If ΓL is not connected, K(L) has at least two elements. W.l.o.g. suppose that K(L) =

{S1, S2}. Let Lr = E[Sr], for r = 1, 2. Then, L1 ∩ L2 = ∅, and

wv (L) = wv (L1) + wv (L2) .

Note that each subset T ⊆ L can be decomposed as T1 ∪ T2 where Tr ⊆ Lr, r = 1, 2. Let us
calculate the Harsanyi dividend of L:

λL (wv) = ∑
T⊆L

(−1)l−t wv (T) = ∑
T1⊆L1
T2⊆L2

(−1)l−t1−t2 wv (T1 ∪ T2)

= ∑
T1⊆L1
T2⊆L2

(−1)l−t1−t2 (wv (T1) + wv (T2))

= ∑
T1⊆L1
T2⊆L2

(−1)l−t1−t2 wv (T1) + ∑
T1⊆L1
T2⊆L2

(−1)l−t1−t2 wv (T2) .

Note that the factor wv (T1) appears in the summation as many times as subsets of edges of L2,
and analogously occurs with wv (T2). Then

λL (wv) = ∑
T1⊆L1

(−1)l−t1 wv (T1)

(
∑

T2⊆L2

(−1)−t2

)
+ ∑

T2⊆L2

(−1)l−t2 wv (T2)

(
∑

T1⊆L1

(−1)−t1

)

= ∑
T1⊆L1

(−1)l−t1 wv (T1)

(
l2

∑
k=0

(
l2
k

)
(−1)−k

)
+ ∑

T2⊆L2

(−1)l−t2 wv
E (T2)

(
l1

∑
k=0

(
l1
k

)
(−1)−k

)
= ∑

T1⊆L1

(−1)l−t1 wv (T1) (1− 1)l1 + ∑
T2⊆L2

(−1)l−t2 wv (T2) (1− 1)l2 = 0.

Lemma 5. Let (N, v) ∈ GN
0 and Γ = (N, E) ∈ GN . If Γ is cycle-free and L ⊆ E, L 6= ∅, is connected,
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then the Harsanyi dividend of L in the link game wv can be computed as follows:

λL (wv) = ∑
D(L)⊆T⊆L

(−1)l−t wv (T) (23)

where D (L) is the cut edges set of L.

Proof. First, we decomposed the sum in (1) as follows:

λL (wv) = ∑
T⊆L

(−1)l−t wv (T) = ∑
D(L)⊆T⊆L

(−1)l−t wv (T) + ∑
T∈T (L)

(L) (−1)l−t wv (T) ,

where T (L) =
{

T ⊆ L | D (L) * T
}

. Then, we prove that the second summand is zero.

If D(L) = ∅ or T (L) = ∅, then trivially (23) holds. Otherwise, suppose D (L) 6= ∅ and
T (L) 6= ∅. Due to the definition of the link game we only have to consider connected subsets
T ⊆ T (L), since for a non-connected T its link game value would be the sum of the link game
values corresponding to its components.

wv(T) will appear in the summands corresponding to all T′ such that T ⊆ T′ ⊆ T (L) and
being T one of its connected components. The number of subsets T′ with this property of size
t + m is (

l − d (T)− t
m

)
,

where d(T) is the number of adjacent links to nodes in N[T] that are not in T. Thus, the coefficient
of wv(T) is giving by:

l−d(T)−t

∑
m=0

(−1)l−t−m
(

l − d (T)− t
m

)
= (−1)l−t (1− 1)l−d(T)−t ,

which equals 0, since there is at least one subset T′ ∈ T (L), such that T′ is not connected and
T ⊂ T′ is one of its connected components.

Lemma 2. Let (N, v) ∈ GN
0 and Γ = (N, E) ∈ GN . If Γ is cycle-free, then for all ∅ 6= L ⊆ E with ΓL

connected, the Harsanyi dividends of the link game can be calculated in the following way:

λL (wv) = F (l + 1, l − dL) , (9)

where dL = |D (L)|, being F(s, r) = ∑r
k=0 (−1)k (r

k) f (s− k), for s, r ∈N and s ≥ r.

Proof. Let ∅ 6= L ⊆ E with ΓL connected, then by (23), and taking into account the symmetry of
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v, it holds:

λL (wv) = ∑
D(L)⊆T⊆L

(−1)l−t wv (T) = ∑
D(L)⊆T⊆L

(−1)l−t f (t + 1) (24)

=
l−dL

∑
m=0

(−1)l−dL−m
(

l − dL
m

)
f (dL + m + 1) = F (l + 1, l − dL) . (25)

Corollary 2. Let (N, v) ∈ GN
0 and Γ = (N, E) ∈ GN . If Γ is cycle-free, f ∈ Cn (R) and f (k) (x) ≥ 0 in

[1,+∞), for k = 0, 1, ..., n, then λL (wv) ≥ 0, for all ∅ 6= L ⊆ E.

Proof. The expression of the dividends given by (25) is a numerical approximation of the deriva-
tive of f of order dL + 1 ≤ n, and we know that f (dL+1) (x) ≥ 0 in a intermediate point x ∈
[dL + 1, l + 1], then λL (wv) ≥ 0.

Lemma 3. Let f be a real function such that f (k) (x) ≥ 0 in [1,+∞), for k = 0, 1, ..., n, then the function
F(s, r) is decreasing in the second argument for every fixed s ∈N, with r ∈N, s ≥ r.

Proof. We first prove that:

F (s, r) + F (s− 1, r− 1) = F (s, r− 1) ,

where 1 < r < s. From definition

F (s, r− 1) =
r−1

∑
k=0

(−1)k
(

r− 1
k

)
f (s− k)

= F (s, r)− (−1)r f (s− r)−
r−1

∑
k=0

(−1)k
[(

r
k

)
−
(

r− 1
k

)]
f (s− k)

= F (s, r) + (−1)r−1 f (s− r) +
r−1

∑
k=1

(−1)k−1
(

r− 1
k− 1

)
f (s− k)

= F (s, r) +
r−1

∑
m=0

(−1)m−1
(

r− 1
m

)
f (s− 1−m) = F (s, r) + F (s− 1, r− 1) .

Then, since F (s− 1, r− 1) ≥ 0 by Corollary 2, we have F (s, r) ≤ F (s, r− 1). Thus recursively,
we obtain F (s, r) ≤ F (s, r′) , whenever r′ ≤ r, and the results holds.

Next corollary follows straightforwardly from Lemmas 2 and 3.

Corollary 1. Let (N, v) ∈ GN
0 and Γ = (N, E) ∈ GN . If Γ is cycle-free, f ∈ Cn (R) and f (k) (x) ≥ 0

in [1,+∞), for k = 0, 1, ..., n, then, for every pair of subsets L, L′ ⊆ E, such that l = l′ and dL ≤ dL′ it
holds:

λL(wv) ≤ λL′(w
v)
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