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THE HEREDITARY DUNFORD-PETHS PROPERTY ON
C(K,E)

BY

PILAR CEMBRANOS1

A Banach space E is said to have the Dunford-Pettis property if for every
pair of weakly null sequences (x,) c E and (x’) c E’ one has lim(x,, x’)
0. Following Diestel [1] we shall say that a Banach space E is hereditarily
Dunford-Pettis (or also that E has the hereditary Dunford-Pettis property) if
all of its closed subspaces have the Dunford-Pettis property. The first known
example of a space enjoying this property was co [3]. Besides c0, the most
simple examples of these spaces are c0(I") for any set I’ and Schur spaces.
Practically the rest of the known examples are among the C(K) spaces (see
Theorem 1).

In this paper we characterize when C(K, E), the Banach space of all
continuous functions defined on a compact Hausdorff space K with values in
a Banach space E, endowed with the supremum norm, has the hereditary
Dunford-Pettis property.
The notations and terminology used and not explained here can be found in

Ill, [51, [7].

Recall that if K is a compact Hausdorff space the to-th derived set of K is
defined by

K() N K(n),
n-1

where K() K and K(n) is the set of all accumulation points of K-1) for
n N; and K is said to be dispersed or scattered if it does not contain any
perfect set.

The following characterization of hereditarily Dunford-Pettis C(K) spaces
is due essentially to Pelczynsld and Szlenk (see [1], [6]).

THEOREM 1. Let K be a compact Hausdorff space. Then C(K) has the
hereditary Dunford-Pettis property if and only if K is dispersed and the o-th
derived set of K is empty.
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Our first result is a characterization of hereditarily Dunford-Pettis spaces
that will be useful in the sequel.

PROPOSITION 2. A Banach space E has the hereditary Dunford-Pettis prop-
erty if and only if every normalized weakly null sequence in E has a subsequence
that is equivalent to the unit vector basis of co

Proof The necessity is a direct consequence of the Bessaga-Pelczynski
Selection Principle (for example, see [1], p. 26) and the assertion proved in [1,
p. 28]. For the sufficiency let F be a closed subspace of E and let (x) c F
and (x) c F’ be two weakly null sequences. If (xn) is norm convergent to
zero clearly (xn, x,) --, 0. if this is not the case there exists a subsequence
(xk) of (xn) that is equivalent to the unit vector basis of c0. Then the closed
subspace n of F spanned by (xk) is isomorphic to c0. Since (x) and
are weakly null sequences in H and H’ respectively, and since H has the
Dunford-Pettis property, it follows that (x, x,)--, 0. Hence F has the
Dunford-Pettis property and this concludes the proof.

According to the preceding result we can deduce that the Banach spaces
constructed by Hagler in [4] and Talagrand in [8] are hereditarily Dunford-
Pettis.

In order to determine when C(K, E) has the hereditary Dunford-Pettis
property we will first prove that the problem can be reduced to the study of
co(E), the Banach space of all null sequences in E endowed with the
supremum norm.

Tn.OtEM 3. C(K, E) has the hereditary Dunford-Pettis property if and only
if one of the following two conditions holds:

(a) K is finite and E has the hereditary Dunford-Pettis property.
(b) C(K) and co(E) have the hereditary Dunford-Pettis property.

Proof. The necessity is dear because C(K) and E are isomorphic to
complemented subspaces of C(K, E) and, if K is infinite it is well known that
co(E ) is isomorphic to a subspace of C(K, E).

If (a) holds it is obvious that C(K, E) is hereditarily Dunford-Pettis.
Suppose that K is infinite and (b) holds, then by Theorem 1, K is dispersed
and K(’) . Let (fn) be a normalized weakly null sequence in C(K, E). In
view of Proposition 2 we need to prove that (f) has a subsequence that is
equivalent to the unit vector basis of co To do this we proceed in an
analogous way to Diestel in [1, p. 29-30]. If we define the equivalence
relationship on K by t t’ whenever fn(Q f(t’) holds for all n . N,
then there exist a metrizable quotient space K of K and a sequence (f)
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C(K, E) such that

(1) f(rr(t)) fa(t) for all t K and n N,

where ,r: K K is the quotient map. By. (1) and Theorem~ 9 of [2], (fn) is a
normalized weakly null sequence in C(K, E). If K is finite it is clear that
C(K, E.) is isomorphic to a complemented subspace of co(E). If K is infinite,
since K is~ a dispersed compact metric space whose 0-th derived set is.empty,
then C(K, E) is isomorphic to co(E) (see [7]). In any case C(K, E) is

hereditarilff Dunford-Pettis and, according to Proposition 2, (f,,) has a subse-
quence (f) that is equivalent to the unit vector basis of c0. Now, by (1), we
deduce that (f,,) is also equivalent to the unit vector basis of Co. Tiffs finishes
the proof.

Our aim now is to characterize hereditarily Dunford-Pettis co(E) spaces. In
order to do this we need to consider Banach spaces E satisfying:

(,) There exists M > 0 such that every normalized weakly null sequence
(x) E has a subsequence (y) that is equivalent to the unit vector
basis of co and satisfies

ay,, < Msupla,,I for all (a) Co.
n-1 n

Note that by Proposition 2 every Banach space E verifying (,) is heredi-
tarily Dunford-Pettis. We will prove that (,) is the necessary and sufficient
condition for co(E) to be hereditarily Dunford-Pettis.

Remark 4. It is easily verified that if E is a Banach space satisfying (,),
and if for each m N we consider Em endowed with the maximum norm,
then every weakly null sequence (x n) in the unit ball of Em has a subsequence
(y n) such that . any < Msuplal for all (a) Co;

n--1 n

moreover, if (x) does not tend to zero in norm we can take the subsequence
(y) equivalent to the unit vector basis of c0.

We omit the proof of the following lemma because the vectorial version of
the proof of Lemma 9 in [3] works the same here.

LEItA 5. Let E be a Banach space and let (x n) ((x)i) be a sequence in
co(E ), with 0 < infllxll < suPllxll < oo, such that (x’)n is norm convergent
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to zero in E for all N. Then (x n) has a subsequence that is equivalent to the
unit vector basis of co

TI-mOIEM 6. Let E be a Banach space satisfying (,). Then co(E) has the
hereditary Dunford-Pettis property.

Proof By Proposition 2 we need to prove that every normalized weakly
null sequence in co(E) has a subsequence that is equivalent to the unit vector
basis of co. First we see that it suffices to prove this for sequences (x") such
that each x"= (x’)i is eventually zero. Indeed, let (y")c. co(E) be a
normalized weakly null sequence. For each n N let z" co(E) be such that
z" (z:’)i is eventually zero and Ily" z"ll < 1/2". If we put x" z/llznll
for all n N, the sequence (x") is a normalized weakly null sequence. Now
suppose (x n) has a subsequence (x nk) that is equivalent to the unit vector
basis of co. Thus there exist two positive constants c and C such that

csuplagl < akx" < Csuplakl for (ak) Co.
k k-1 k

Take ko N with Ek kol/2k < C/4; then for each (ak) Co We have

c
suPlakl < akY"" < +2C suPlakl.4
kko k>ko k>ko

Therefore (y"k)k>k is equivalent to the unit vector basis of Co.
For each m N consider the continuous projection with norm one, Pro"

co(E ) co(E ), defined by

Pm(X1, X2,...) (X1,...,Xm,O,O,...)

for x (xi) co(E ).
Let (x") be a normalized weakly null sequence in co(E) such that each

x" (x) is eventually zero. If there exists m N such that Pro(x") x"
for all n N, then it follows from Remark 4 that (x") has a subsequenc that
is equivalent to the unit vector basis of co If this is not the case we can extract
a subsequence (yn) of (x n) such that if r, is the first positive integer satisfying
Pr.(Y") Y" then r, < r,+l for all n N. At this step we can find two
different situations:

(A) For all N the sequence

is norm convergent to zero.
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(B) There exists j N such that (yf) c E does not converge to zero in
norm.
From Lemma 5 it follows that ease (A) there is nothing more to prove.

Suppose now that () holds. Since the sequence (.(y)) tends to zero
weakly but not in norm, according to Remark 4, there is a subsequence (z) of
(y) such that ((z)) is exluivalent to the unit vector basis of c0; moreover,
ther is c > 0 such that

(a) csup[a.[ < a.P2(z") < Msupla.[ for (a.) co.

In addition, we can assume Py(zx) zx. If s is the first positive integer
satisfying P(zx) zx, then s >j. By Remark 4, (z) has a subsequenee
(zx"), with o(1) > 1, such that

E a(P,- Pj.)(z) < Msuplal
n--1 n

for (a) c0.

If s2 is the first positive integer such that P,2(z(t)) , O1(1) then s2 > st. Now
we can repeat the preceding argument and obtain by induction a family
((z()).: k E N) of subsequences of (z) such that:
(i) (z(")). is a subsequence of (z-()). for all k E N;
(ii) if, for each k E N, Sk+ denotes the first positive integer such that

Psk+x(Z k(k)) Z k(k), then (Sk) is an increasing sequence; and
(iii) for each k N,

Ea(’,+-’,)(z+) < Msuplal for (a) Co.

Let w n z .(") for n N, and So j. We claim that (w") is equivalent to
the unit vector basis of co. To prove this choose r N and a finite sequence
(an)rn_l of scalars. By (a) we have

II n---1
anWn[l I[ Py(n=l anWn ) ][= II n__lanPj(Wn ) II >" c

l <n<rmaX [anl

and
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From (i), (ii) and (iii) it follows that for each k {0,1,..., r },

Since

n-k+1

la,lllw*ll + M max lal
l<n<r

< (M + 1) max lal.
l<n<r

=max Pj a w max P/ P) a w
n---1 Okr n--1

we have

Hence (w) is equivalent to the unit vector basis of co and this concludes the
proof.

THEOaM 7.
verifies (.).

If co(E) has the hereditary Dunford-Pettis property, then E

Proof. Since E is isomorphic to a complemented subspace of co(E) then
E is hereditarily Dunford-Pettis. Suppose that E does not verify (,). Then,
according to Proposition 2, for each n N there exists a sequence (x’) E
such that:

(1) IIxll--- I for all N;
(2) (x’) is equivalent to the unit vector basis of Co; and

x" of (x’) there is a finite sequence (a)[,(3) for every subsequence ( ik)k
of scalars so that
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Let yg-- (x), x,..., xj, O, 0,...) co(E) for every j N, and let r(y)
denote the n-th coordinate of y Co(E). Since r(yg) x7 for all j >_ n,
from (1) and (2) it follows that (yg) is a normalized weakly ’null sequence in
co(E). We shall prove that no subsequence of (yg) is equivalent to the unit
vector basis of Co. Let (yg) be a subsequence of (yg). For each n N,
(n(yJk))k>n (X;k)kn is a subsequence of (x’)i, so by (3) there is a finite
sequence (ak), of scalars such that

E > max la l;
k--n n<k<rn

therefore

’. ayA > ,r ., akYA
kfn k-’-n

E akrn(YJk)
k-n

> n max lakl.
n<kAr

Hence (yJk)k is not equivalent to the unit vector basis of c0. According to
Proposition 2 this contradicts the fact that co(E) is hereditarily Dunford-Pet-
tis.

By the preceding results we have the following two corollaries.

COROLLARY 8. C(K, E) has the hereditary Dunford-Pettis property if and
only if one of the two following conditions holds:

(a) K is finite and E has the hereditary Dunford-Pettis property.
(b) K is dispersed with K() and E verifies (,).

COROLLARY 9. Let E be a Banach space. Then the following assertions are
equivalent"

(a) C(K, E) is hereditarily Dunford-Pettis for some infinite compact K.
(b) C(K, E) is hereditarily Dunford-Pettis for all K such that C(K) is

hereditarily Dunford-Pettis.
(c) C(K, E) is hereditarily Dunford-Pettis for all dispersed compact K with

K(O,) .
(d) co(E) is hereditarily Dunford-Pettis.
(e) E verifies (,).

The above results allow us to give some examples of Banach spaces E such
that C(K, E) is hereditarily Dunford-Pettis whenever C(K) is hereditarily
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Dunford-Pettis. In fact, we can deduce that most of the known hereditarily
Dunford-Pettis spaces have this property: the spas with the Schur property,
Co(I’) for all F, the Banach spaces constructed by Hagler in [4] and Talagrand
in [8], and the hereditarily Dunford-Pettis C(K) spaces. By Corollary 9 it
suffices to prove that these spaces satisfy (.). This is dear for the Sehur spaces
and Co(I’); for the examples constructed by Hagler and Talagrand it follows
from Proposition 5 of [4] and Theorem 1 of [8] respectively. Now we shall
prove that it is also true for the hereditarily Dunford-Pettis C(K) spaces.

PROPOSITION 10 IfK is a dispersed compact Hausdorffspace with K
and N * is the Alexandroff compactification of N, then K X N * is a dispersed
compact space with (K N * )

Proof. Let N * N U (oo) and let A be a nonempty subset of K x N *.
We shall prove that A has an isolated point. Since

)/ x r, U ( x [n]) (X: x
n----1

then

)A= U((Kx{n})nA) u((Kx(oo})nA)

If there is m N such that (K x ( m }) N A, , from the fact that K x { rn )
is homeomorphic to K it follows that there exist K and a neighborhood V
of t in K such that

(V X {m}) n [(: x (m}) n,4] ((,, m)].
Hence (t, m) is an isolated point of A because (V x (rn }) (3 A is a neighbor-
hood of (t, m) in A.
If(Kx {n})OA= for all nN, then(Kx (oo))OA, .Again,

from the fact that K x { oo } is homeomorphic to K it follows that there exist
t K and a neighborhood V of t in K such that

(v x (oo}) r [(r x (oo}) r a] {(t,

Then (V x N *) A {(t, oo)}. Since (V N *) N A is a neighborhood of
(t, oo) in A we conclude that (t, oo) is an isolated point of A. Therefore
K N * is a dispersed compact space.
To prove that the 0-th derived set of K N * is empty note that it can be

verified by induction that

(KXN*)(")c(K(")xN)U(K("-)x {oo)) for allnN.
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If K) f’l=tK") is empty there exists m N such that K(m) ; this
implies that (K N*)m+l), and therefore (K x N*)), is empty.

PROPOSITION II.
C(K) verifies ( ).

If C(K) has the hereditary Dunford-Pettis property, then

Proof. By Theorem 1, K is dispersed and K’) . Then the preceding
proposition implies that K N* is dispersed and its o-th derived set is
empty. Again by Theorem 1 it follows that C(K x N*) is hereditarily
Dunford-Pettis. Thus, from Corollary 9 and the fact that C(K N*) is
isomorphic to C(N *, C(K)), we conclude that C(K) verifies (,).

Finally we note that the following natural question arises:

Problem. Does every hereditarily Dunford-Pettis space satisfy (,)?.

Added in Proof. Recently Prof. J. Elton has pointed out to me that, in his
Ph.D. dissertation (Yale University 1978-1979), he studied in some detail a
topic which is related to this paper: the subsequences of weakly null se-
quences. In particular Proposition 2 is essentially his Corollary 3.5.

REFERENCES

1. J. DIESTEL, A survey of results related to the Dunford-Pettis property, Contemporary Mathe-
matics, vol. 2 (1980), pp. 15-60.

2. I. DOBIKOV, On representation of linear operators on Co(T, X), Czech. Math. J., vol. 21 (1971),
pp. 13-30.

3. A. GROTHENDIV.CK, Sur les applications lin$.aires faiblement compactes d’espaces du type C(K),
Canad, J. Math., vol. 5 (1953), pp. 129-173.

4. J. HAGLV.I, A counterexample to several questions about Banach spaces, Studia Math., vol..,55

(1977), pp. 289-308.
5. J. LINDENSTRAUSS and L. TZAFRIRI, Classical Banach Spaces I, Springer-Verlag, New York,

1977.
6. A. PLCZYNSrd and W. SZUNK, An example of a non-shrinking basis, Rev. Roumaine Math.

Pures Appl., vol. 10 (1965), pp. 961-966.
7. Z. S.MADNL Banach spaces of continuous functions, PWN, Warsaw 1971.
8. M. TAtSRAND, The Dunford-Pettis property in C([0,1], E) and LX(E), Israel J. Math., vol. 44

(1983), pp. 317-321.

UNIVERSIDAD COMPLUTENSE DE MADRID
MADRID, SPAIN


