Person:
Pérez García, Lucas

Loading...
Profile Picture
First Name
Lucas
Last Name
Pérez García
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Físicas
Department
Física de Materiales
Area
Física Aplicada
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet IDGoogle Scholar ID

Search Results

Now showing 1 - 10 of 16
  • Item
    Formation of a magnetite/hematite epitaxial bilayer generated with low energy ion bombardment
    (Applied physics letters, 2017) Ruiz Gómez, Sandra; Serrano, A.; Carabias,, I.; Garcıa, M. A.; Hernando Grande, Antonio; Mascaraque Susunaga, Arantzazu; Pérez García, Lucas; González Barrio, Miguel Ángel; Rodríguez de la Fuente, Óscar
    We have used a low-energy ion bombardment to fabricate an epitaxial single-crystalline magnetite/hematite bilayer grown on Au(111). This non-conventional fabrication method involves the transformation of the upper layers of a single-crystalline hematite thin film to single-crystalline magnetite, a process driven by the preferential sputtering of oxygen atoms and favoured by the good structural matching of both phases. We show the reversibility of the transformation between hematite and magnetite, always keeping the epitaxial and single- crystalline character of the films. The magnetic characterization of the bilayer grown using this method shows that the magnetic response is mainly determined by the magnetite thin film, exhibiting a high coercivity. Published by AIP Publishing.
  • Item
    Helical surface magnetization in nanowires: the role of chirality
    (Nanoscale, 2020) Ruiz Gómez, Sandra; Fernández González, Claudia; Martínez, Eduardo; Raposo, Víctor; Sorrentino, Andrea; Foerster, Michael; Aballe, Lucía; Mascaraque Susunaga, Arantzazu; Ferrer, Salvador; Pérez García, Lucas
    Nanomagnetism is nowadays expanding into three dimensions, triggered by the discovery of new magnetic phenomena and their potential use in applications. This shift towards 3D structures should be accompanied by strategies and methodologies to map the tridimensional spin textures associated. We present here a combination of dichroic X-ray transmission microscopy at different angles and micromagnetic simulations allowing to determine the magnetic configuration of cylindrical nanowires. We have applied it to permalloy nanowires with equispaced chemical barriers that can act as pinning sites for domain walls. The magnetization at the core is longitudinal and generates at the surface of the wire helical magnetization. Different types of domain walls are found at the pinning sites, which respond differently to applied fields depending on the relative chirality of the adjacent domains.
  • Item
    Large magnetoresistance of isolated domain walls in La_(0.7)Sr(0.3)MnO_3 nanowires
    (Advanced Materials, 2023) Orfila Rodríguez, Gloria; Sanchez-Manzano, David; Arora, Ashima; Cuéllar Jiménez, Fabian Andrés; Ruiz Gómez, Sandra; Rodriguez-Corvillo, Sara; López, Sandra; Peralta, Andrea; Carreira, Santiago J.; Gallego, Fernando; Tornos Castillo, Javier; Rouco Gómez, Víctor; Riquelme, Juan J.; Munuera, Carmen; Mompean, Federico J.; Garcia-Hernandez, Mar; Sefrioui Khamali, Zouhair; Villegas Hernández, Javier Eulogio; Pérez García, Lucas; Rivera Calzada, Alberto Carlos; León Yebra, Carlos; Valencia, Sergio; Santamaría Sánchez-Barriga, Jacobo
    Generation, manipulation, and sensing of magnetic domain walls are cornerstones in the design of efficient spintronic devices. Half-metals are amenable for this purpose as large low field magnetoresistance signals can be expected from spin accumulation at spin textures. Among half metals, La1−xSrxMnO3 (LSMO) manganites are considered as promising candidates for their robust half-metallic ground state, Curie temperature above room temperature (Tc = 360 K, for x = 1/3), and chemical stability. Yet domain wall magnetoresistance is poorly understood, with large discrepancies in the reported values and conflicting interpretation of experimental data due to the entanglement of various source of magnetoresistance, namely, spin accumulation, anisotropic magnetoresistance, and colossal magnetoresistance. In this work, the domain wall magnetoresistance is measured in LSMO cross-shape nanowires with single-domain walls nucleated across the current path. Magnetoresistance values above 10% are found to be originating at the spin accumulation caused by the mistracking effect of the spin texture of the domain wall by the conduction electrons. Fundamentally, this result shows the importance on non-adiabatic processes at spin textures despite the strong Hund coupling to the localized t2g electrons of the manganite. These large magnetoresistance values are high enough for encoding and reading magnetic bits in future oxide spintronic sensors.
  • Item
    Geometrically defined spin structures in ultrathin Fe₃O₄ with bulk like magnetic properties
    (Nanoscale, 2018) Ruiz Gómez, Sandra; Pérez García, Lucas; Mascaraque Susunaga, Arantzazu; Quesada, Adrian; Prieto, Pilar; Palacio, Irene; Martín García, Laura; Foerster, Michael; Aballe, Lucía; Figuera, Juan de la
    We have grown high quality magnetite microcrystals free from antiphase boundaries on Ru(0001) by reactive molecular beam epitaxy, conserving bulk magnetic properties below 20 nm thickness. Magnetization vector maps are obtained by X-ray spectromicroscopy and compared with micromagnetic simulations. The observed domain configurations are dictated purely by shape anisotropy, overcoming the possible influences of (magneto) crystalline anisotropy and defects, thus demonstrating the possibility of designing spin structures in ultrathin, magnetically soft magnetite at will.
  • Item
    Use of magnets for reversible restoration in sculpture. The case of the "Virgen de los Desamparados" in Valencia (Spain)
    (Journal of cultural heritage, 2018) Azahara Rodríguez, M.; Ruiz Gómez, Sandra; Pérez García, Lucas; Mas Barberà, Xavier
    In this paper, we present the use of a magnetic system for restoring a real piece of art: the Virgen de los Desamparados sculpture (1954) by the Valencian sculptor Silvestre d'Edeta (Valencia, Spain). This sculpture is made of artificial stone reinforced with iron rods in the matrix and, before the intervention, showed a high degree of degradation due to various physical, chemical and biological processes causing internal strain, cracks and fragmentation. Several non-destructive imaging techniques (photography, photogrammetry, digital radiography and 3D virtual reconstruction) have been used to study the original status of the artwork. The materials to produce the prosthesis to restore the sculpture, and the procedure to attach them with magnets and various adhesives, have been addressed in this study. Different theoretical models and simulations have been developed to help the restorer to select the most appropriate magnets and their optimal position. The restoration returns legibility to the piece by restoring the missing head-hair-crown section.
  • Item
    Structure and magnetism of ultrathin nickel-iron oxides grown on Ru(0001) by high-temperature oxygen-assisted molecular beam epitaxy
    (Scientific reports, 2018) Ruiz Gómez, Sandra; Pérez García, Lucas; Mandziak, Anna; Figuera, Juan de la; Delgado Soria, Guiomar; Prieto Recio, Pilar; Quesada, Adrián; Foerster, Michael; Aballe, Lucía
    We demonstrate the preparation of ultrathin Fe-rich nickel ferrite (NFO) islands on a metal substrate. Their nucleation and growth are followed in situ by low-energy electron microscopy (LEEM). A comprehensive characterization is performed combining LEEM for structural characterization and PEEM (PhotoEmission Electron Microscopy) with synchrotron radiation for chemical and magnetic analysis via X-ray Absorption Spectroscopy and X-ray Magnetic Circular Dichroism (XAS-PEEM and XMCD-PEEM, respectively). The growth by oxygen-assisted molecular beam epitaxy takes place in two stages. First, islands with the rocksalt structure nucleate and grow until they completely cover the substrate surface. Later three-dimensional islands of spinel phase grow on top of the wetting layer. Only the spinel islands show ferromagnetic contrast, with the same domains being observed in the Fe and Ni XMCD images. The estimated magnetic moments of Fe and Ni close to the islands surface indicate a possible role of the bi-phase reconstruction. A significant out-of-plane magnetization component was detected by means of XMCD-PEEM vector maps.
  • Item
    Dense strontium hexaferrite-based permanent magnet composites assisted by cold sintering process
    (Journal of alloys and compounds, 2022) García Martín, Eduardo; Granados Miralles, Cecilia; Ruiz Gómez, Sandra; Pérez García, Lucas; Campo, Adolfo del; Guzmán Mínguez, Jesús C.; Julián Fernández, César de; Quesada, Adrián; Fernández, José F.; Serrano, Aida
    The use of rare-earth-based permanent magnets is one of the critical points for the development of the current technology. On the one hand, industry of the rare-earths is highly polluting due to the negative environmental impact of their extraction and, on the other hand, the sector is potentially dependent on China. Therefore, investigation is required both in the development of rare-earth-free permanent magnets and in sintering processes that enable their greener fabrication with attractive magnetic properties at a more competitive price. This work presents the use of a cold sintering process (CSP) followed by a post annealing at 1100 degrees C as a new way to sinter composite permanent magnets based on strontium ferrite (SFO). Composites that incorporate a percentage <= 10% of an additional magnetic phase have been prepared and the morphological, structural and magnetic properties have been evaluated after each stage of the process. CSP induces a phase transformation of SFO in the composites, which is partially recovered by the post thermal treatment improving the relative density to 92% and the magnetic response of the final magnets with a coercivity of up to 3.0 kOe. Control of the magnetic properties is possible through the composition and the grain size in the sintered magnets. These attractive results show the potential of the sintering approach as an alternative to develop modern rare-earth-free composite permanent magnets.
  • Item
    Direct x-ray detection of the spin hall effect in CuBi
    (Physical review X, 2022) Ruiz Gómez, Sandra; Guerrero, Rubén; Khaliq, Muhammad W; Fernández González, Claudia; Prat, Jordi; Valera, Andrés; Finizio, Simone; Perna, Paolo; Camarero, Julio; Pérez García, Lucas; Aballe, Lucía; Foerster, Michael
    The spin Hall effect and the inverse spin Hall effect are important spin-charge conversion mechanisms. The direct spin Hall effect induces a surface spin accumulation from a transverse charge current due to spin-orbit coupling even in nonmagnetic conductors. However, most detection schemes involve additional interfaces, leading to large scattering in reported data. Here we perform interface-free x-ray spectroscopy measurements at the Cu L_(3;2) absorption edges of highly Bi-doped Cu (Cu_(95)Bi_5). The detected x-ray magnetic circular dichroism signal corresponds to an induced magnetic moment of (2.2 + 0.5) x 10^(-12) mu(B) A^(-1) cm^(2) per Cu atom averaged over the probing depth, which is of the same order of magnitude as found for Pt measured by magneto-optics. The results highlight the importance of interface-free measurements to assess material parameters and the potential of CuBi for spin-charge conversion applications.
  • Item
    Epitaxial integration of CoFe₂O₄ thin films on Si (001) surfaces using TiN buffer layers
    (Applied surface science, 2018) Prieto, Pilar; Marco, F.; Prieto, José E.; Ruiz Gómez, Sandra; Pérez García, Lucas; Perez del Real, Rafael; Velazquez, Manuel; De laFiguera, Juan
    Epitaxial cobalt ferrite thin films with strong in-plane magnetic anisotropy have been grown on Si (001) substrates using a TiN buffer layer. The epitaxial films have been grown by ion beam sputtering using either metallic, CoFe₂, or ceramic, CoFe₂2O₄, targets. X-ray diffraction (XRD) and Rutherford spectrometry (RBS) in random and channeling configuration have been used to determine the epitaxial relationship CoFe₂O₄ [100]/TiN [100]/Si [100]. Mossbauer spectroscopy, in combination with XRD and RBS, has been used to determine the composition and structure of the cobalt ferrite thin films. The TiN buffer layer induces a compressive strain in the cobalt ferrite thin films giving rise to an in-plane magnetic anisotropy. The degree of in- plane anisotropy depends on the lattice mismatch between CoFe₂O₂ and TiN, which is larger for CoFe₂O₄ thin films grown on the reactive sputtering process with ceramic targets.
  • Item
    Project number: 186
    Desarrollo de herramientas para el aprendizaje interactivo y experimental del Electromagnetismo en el aula
    (2018) Pérez García, Lucas; Mascaraque Susunaga, Arantzazu; González Barrio, Miguel Angel; Varela del Arco, María; Rivera Calzada, Alberto Carlos; Ruiz Gómez, Sandra; Romero Izquierdo, Carlos; Rivera Folgado, Alba; Fernández Muñoz, Alejandro