Person:
Fernández Abascal, José Luis

Loading...
Profile Picture
First Name
José Luis
Last Name
Fernández Abascal
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Químicas
Department
Area
Química Física
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet IDGoogle Scholar ID

Search Results

Now showing 1 - 3 of 3
  • Item
    Teoría de perturbaciones de fluidos moleculares
    (2015) Fernández Abascal, José Luis
  • Item
    A general purpose model for the condensed phases of water: TIP4P/2005
    (Journal of Chemical Physics, 2005) Fernández Abascal, José Luis; Vega De Las Heras, Carlos
    A potential model intended to be a general purpose model for the condensed phases of water is presented. TIP4P/2005 is a rigid four site model which consists of three fixed point charges and one Lennard-Jones center. The parametrization has been based on a fit of the temperature of maximum density (indirectly estimated from the melting point of hexagonal ice), the stability of several ice polymorphs and other commonly used target quantities. The calculated properties include a variety of thermodynamic properties of the liquid and solid phases, the phase diagram involving condensed phases, properties at melting and vaporization, dielectric constant, pair distribution function, and self-diffusion coefficient. These properties cover a temperature range from 123to573K and pressures up to 40000bar. The model gives an impressive performance for this variety of properties and thermodynamic conditions. For example, it gives excellent predictions for the densities at 1bar with a maximum density at 278K and an averaged difference with experiment of 7×10−4g∕cm3.
  • Item
    A potential model for the study of ices and amorphous water: TIP4P/Ice
    (Journal of Chemical Physics, 2005) Fernández Abascal, José Luis; Sanz García, Eduardo Santiago; García Fernández, Raúl; Vega De Las Heras, Carlos
    The ability of several water models to predict the properties of ices is discussed. The emphasis is put on the results for the densities and the coexistence curves between the different ice forms. It is concluded that none of the most commonly used rigid models is satisfactory. A new model specifically designed to cope with solid-phase properties is proposed. The parameters have been obtained by fitting the equation of state and selected points of the melting lines and of the coexistence lines involving different ice forms. The phase diagram is then calculated for the new potential. The predicted melting temperature of hexagonal ice (Ih) at 1bar is 272.2K. This excellent value does not imply a deterioration of the rest of the properties. In fact, the predictions for both the densities and the coexistence curves are better than for TIP4P, which previously yielded the best estimations of the ice properties.