Person:
Díaz Fernández, Álvaro

Loading...
Profile Picture
First Name
Álvaro
Last Name
Díaz Fernández
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Físicas
Department
Física de Materiales
Area
Identifiers
UCM identifierScopus Author IDDialnet ID

Search Results

Now showing 1 - 5 of 5
  • Item
    Project number: 23
    Modernización de contenidos en asignaturas de Física de la Materia Condensada
    (2019) Dominguez-Adame Acosta, Francisco; Díaz García, Elena; Díaz Fernández, Álvaro; Baba, Yuriko Caterina
    El principal objetivo de este Proyecto INNOVA-Docencia es el estudio, análisis y posterior elevación de propuestas para la mejora de la docencia de la Física de la Materia Condensada. Para ello, varios profesores y estudiantes de la Facultad de Ciencias Físicas hemos diseñado, organizado y llevado a cabo las Jornadas Últimos Avances en Física de la Materia Condensada. Se ha elaborado una encuesta para los estudiantes que han participado en las Jornadas. El análisis de los resultados ha permitido elaborar un libro blanco que se ha hecho llegar a los miembros del Departamento de Física de Materiales para su conocimiento y discusión.
  • Item
    Project number: 207
    Física de la Materia Condensada: de los contenidos docentes a su aplicación en tareas de investigación en el postgrado
    (2020) Díaz García, Elena; Domínguez Adame Acosta, Francisco; Díaz Fernández, Álvaro; Baba, Yuriko Caterina
    La Física de la Materia Condensada trata del estudio de aquellos fenómenos que surgen de la consideración de un elevado número de partículas en interacción. Comprende, por tanto, el estudio de la materia que nos rodea, dando lugar al descubrimiento de fenómenos que han tenido un impacto sin precedentes en nuestra sociedad actual. De hecho, un elevado número de premios Nobel de Física se han otorgado a estudios relacionados con esta materia. El caso quizá más conocido por todos es el transistor, que es la base de toda la tecnología actual, por el que se concedió el premio Nobel de Física en 1956 a Shockley, Bardeen y Brattain. Más recientemente, el descubrimiento del grafeno, por el cual se concedió el Nobel de Física en 2010 a Geim y Novoselov, ha supuesto una revolución mundial por sus propiedades físicas que hoy en día se siguen investigando por su potencial en aplicaciones. Además, el fenómeno de emergencia en la Física de la Materia Condensada da lugar a la formación de fases exóticas de la materia, más allá de los sólidos y los líquidos convencionales, como por ejemplo son los superconductores y las fases topológicas de la materia. En consecuencia, existen inversiones millonarias a nivel europeo y mundial que buscan acelerar la investigación en nuevos materiales y así alcanzar en un futuro próximo todas aquellas aplicaciones novedosas que se esperan, como por ejemplo la tan ansiada computación cuántica. En la Facultad de Ciencias Físicas de la Universidad Complutense, el número de asignaturas dedicadas al estudio de la Física de la Materia Condensada en el Grado y el Máster es limitado a una única asignatura por etapa. Con tan poco volumen de asignaturas es imposible encontrar ocasión para presentar a los alumnos los últimos avances en el campo o, incluso, describir con detalle aquellos fenómenos cuya relevancia en la Física actual es de capital importancia. En este Proyecto INNOVA-Docencia hemos pretendido complementar la oferta de contenidos relacionados con Física de la Materia Condensada del Grado en Física organizando una serie de seminarios englobados en las Jornadas Últimos Avances en Física de la Materia Condensada. Estas Jornadas tienen un doble objetivo docente. Por una parte, pretenden que nuestros alumnos se familiaricen con los temas de investigación más recientes y punteros del área. Por otra parte, también buscan promover que muchos más alumnos y alumnas decidan iniciar una carrera investigadora en esta área.
  • Item
    Project number: 293
    Actualización de material docente basado en Jupyter Notebook para su uso dentro del Plan de Internacionalización
    (2018) Díaz García, Elena; Cabrera Granado, Eduardo; Domínguez-Adame Acosta, Francisco; Gómez Calderón, Óscar; Melle Hernández, Sonia; Díaz Fernández, Álvaro; Villas Pazos, Alberto
    La iniciativa de este proyecto viene justificada a la vista del gran interés generado por algunos de los materiales docentes diseñados por nuestro grupo en anteriores proyectos, en los que se vienen desarrollando diferentes herramientas docentes basadas en el uso de Jupyter Notebooks. A la vista del impacto generado, y teniendo en cuenta que la evolución del proyecto Jupyter, así como las aplicaciones de distintas herramientas asociadas a Jupyter Notebook, es continua, nos planteamos como objetivo principal del presente proyecto la actualización y la puesta a disposición en inglés de nuestra producción de los últimos años.
  • Item
    Project number: 140
    Propuesta de una nueva metodología para la enseñanza de la física de la materia condensada: clase semipresencial con formato de taller
    (2022) Domínguez-Adame Acosta, Francisco; Díaz García, Elena; Chico Gómez, Leonor; Relaño Pérez, Armando; Díaz Fernández, Álvaro; Molina Fernández, Rafael Alejandro; Baba, Yuriko Caterina; López Corps, Ángel
    En este Proyecto INNOVA-Docencia hemos pretendido superar estas limitaciones académicas de las asignaturas tradicionales de grado y máster. Para ello, se ha llevado a cabo la implementación, el desarrollo y el análisis de resultados de la clase semipresencial con formato de taller, particularizada a la docencia de la FMC. Partimos del convencimiento de que este estudio es necesario incluso en el futuro, cuando la crisis sanitaria se haya superado. La UCM está haciendo ya un esfuerzo considerable para ofrecer cursos virtuales o que requieran poca presencialidad.
  • Item
    Floquet engineering of Dirac cones on the surface of a topological insulator
    (Physical review B, 2019) Díaz Fernández, Álvaro; Díaz García, Elena; Gómez León, Álvaro; Platero, G.; Domínguez-Adame Acosta, Francisco
    We propose to Floquet engineer Dirac cones at the surface of a three-dimensional topological insulator. We show that a large tunability of the Fermi velocity can be achieved as a function of the polarization, direction, and amplitude of the driving field. Using this external control, the Dirac cones in the quasienergy spectrum may become elliptic or massive, in accordance with experimental evidence. These results help us to understand the interplay of surface states and external ac driving fields in topological insulators. In our work we use the full Hamiltonian for the three-dimensional system instead of effective surface Hamiltonians, which are usually considered in the literature. Our findings show that the Dirac cones in the quasienergy spectrum remain robust even in the presence of bulk states, and therefore, they validate the usage of effective surface Hamiltonians to explore the properties of Floquet-driven topological boundaries. Furthermore, our model allows us to introduce out-of-plane field configurations which cannot be accounted for by effective surface Hamiltonians.