Person:
Gil Dones, Félix

Loading...
Profile Picture
First Name
Félix
Last Name
Gil Dones
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Biológicas
Department
Genética, Fisiología y Microbiología
Area
Genética
Identifiers
UCM identifierORCIDScopus Author IDDialnet IDGoogle Scholar ID

Search Results

Now showing 1 - 6 of 6
  • Item
    A clinical perspective on the utility of alpha 1 antichymotrypsin for the early diagnosis of calcific aortic stenosis
    (Clinical Proteomics, 2017) Martin-Rojas, Tatiana; Mourino-Alvarez, Laura; Gil Dones, Félix; Cuesta, Fernando de la; Rosello-Lleti, Esther; Laborde, Carlos ; Rivera, Miguel; Lopez-Almodovar, Luis Fernando; Lopez, Juan Antonio; Akerstrom, Finn ; Padial, Luis ; Barderas, Maria
    Background: Calcific aortic stenosis (CAS) is the most common heart valve disease in the elderly, representing an important economic and social burden in developed countries. Currently, there is no way to predict either the onset or progression of CAS, emphasizing the need to identify useful biomarkers for this condition. Methods: We performed a multi-proteomic analysis on different kinds of samples from CAS patients and healthy donors: tissue, secretome and plasma. The results were validated in an independent cohort of subjects by immunohistochemistry, western blotting and selected reaction monitoring. Results: Alpha 1 antichymotrypsin (AACT) abundance was altered in the CAS samples, as confirmed in the validation phase. The significant changes observed in the amounts of this protein strongly suggest that it could be involved in the molecular mechanisms underlying CAS. In addition, our results suggest there is enhanced release of AACT into the extracellular fluids when the disease commences. Conclusions: The significant increase of AACT in CAS patients suggests it fulfils an important role in the physiopathology of this disease. These results permit us to propose that AACT may serve as a potential marker for the diagnosis of CAS, with considerable clinical value.
  • Item
    Proteomic characterization of human coronary thrombus in patients with ST-segment elevation acute myocardial infarction
    (Journal of Proteomics, 2014) Alonso-Orgaz, Sergio; Moreno-Luna, Rafael; López, Juan ; Gil Dones, Félix; Padial, Luis ; Moreu, Jose; Cuesta, Fernando de la; Barderas, Maria
    Abstract Acute myocardial infarction with ST-segment elevation (STEMI) initiates with intraluminal thrombosis and results in total occlusion of the coronary artery. To date, characterization of the coronary thrombus proteome in STEMI patients has not been yet accomplished. Therefore, we aimed to perform an in-depth proteomic characterization of the human coronary thrombus by means of three different approaches: 2-DE followed by mass spectrometry (MALDI MS/MS), 1-DE combined either with liquid chromatography coupled to mass spectrometry in a MALDI TOF/TOF (LC–MALDI-MS/MS), or in a LTQ-Orbitrap (LC–ESI-MS/MS). This approach allowed us to identify a total of 708 proteins in the thrombus. Expression in coronary thrombi (n = 20) of 14 proteins was verified, and the expression of fibrin and 6 cell markers (platelets, monocytes, neutrophils, eosinophils, T-cells and B-cells) quantified by selected reaction monitoring (SRM). A positive correlation of 5 proteins (fermitin homolog 3, thrombospondin-1, myosin-9, beta parvin and ras-related protein Rap-1b) with CD41 was found, pointing out the potential activation of a focal adhesion pathway within thrombus platelets. DIDO1 protein was found to correlate negatively with thrombus fibrin, and was found up-regulated in the plasma of these STEMI patients, which may constitute a starting point for further analyses in the search for biomarkers of thrombosis. Biological significance The proteomic characterization of the human coronary thrombus may contribute to a better understanding of the mechanisms involved in acute coronary syndrome, and thus pave the road for the identification of new therapeutic targets that may help addressing this and other thrombotic diseases. A novel methodology to characterize thrombus composition and expression of a sub-group of proteins is hereby described, which allowed linking protein expression with cellular and ECM matrix composition of the thrombus. Five proteins (fermitin homolog 3, thrombospondin-1, myosin-9, beta parvin and ras-related protein Rap-1b) co-express within the human coronary thrombus with CD41, pointing out the potential activation of a focal adhesion pathway within thrombus platelets during thrombus formation. Besides, the protein death-inducer obliterator 1, found to be expressed within the human coronary thrombus, has been proved to increase in the plasma of STEMI patients, which constitutes an important starting point for further analyses in the search for biomarkers of thrombosis.
  • Item
    Tissue proteomics in atherosclerosis: elucidating the molecular mechanisms of cardiovascular diseases
    (Expert Review of Proteomics, 2009) Cuesta, Fernando de la; Álvarez Llamas, Gloria; Gil Dones, Félix; Martin-Rojas, Tatiana; Zubiri, Irene; Pastor Vargas, Carlos; Barderas, Maria ; Vivanco Martínez, Fernando
    Atherosclerosis is a disease with higher levels of mortality in developed countries. Comprehension of the molecular mechanisms can yield very useful information in clinics for prevention, diagnosis and recovery monitoring. Proteomics represents an ideal methodology for this purpose, as proteins constitute the effectors of the different biological processes running during pathogenesis. To date, studies in atherosclerosis have been mainly focused on the search for plasma biomarkers. However, tissue proteomics allows going deeper into tissue secretomes, arterial layers or particular cells of interest, which, in turn, constitutes a more direct approximation to in vivo operating mechanisms. The aim of this review is to report latest advances in tissue proteomics in atherosclerosis and related diseases (e.g., aortic stenosis and ischemic injury).
  • Item
    Proteomics - A Powerful Tool to Deepen the Molecular Mechanisms of Aortic Stenosis Disease
    (Aortic Stenosis - Etiology, Pathophysiology and Treatment, 2011) Gil Dones, Félix; Cuesta, Fernando de la; Álvarez Llamas, Gloria; Padial, Luis ; López-Almodovar, Luis ; Martin-Rojas, Tatiana; Vivanco, Fernando; Barderas, Maria
  • Item
    Analysis of the Plasma Proteome Associated with Acute Coronary Syndrome: Does a Permanent Protein Signature Exist in the Plasma of ACS Patients?
    (Journal of protemoe research, 2010) Dardé, Veronica ; Cuesta, Fernando de la; Gil Dones, Félix; Álvarez Llamas, Gloria; Barderas, Maria ; Vivanco Martínez, Fernando
    Acute coronary syndrome (ACS) is triggered by the occlusion of a coronary artery usually due to the thrombosis caused by an atherosclerotic plaque. The identification of proteins directly involved in the pathophysiological events underlying ACS will enable more precise diagnoses and a more accurate prognosis to be determined. Accordingly, we have performed a longitudinal study of the plasma proteome in ACS patients by 2-DE and DIGE. Plasma samples from patients, healthy controls, and stable coronary artery disease (CAD) patients were immunodepleted of the six most abundant proteins, and they were analyzed in parallel at four different times: 0 (on admission) and after 4, 60, and 180 days. From a total of 1400 spot proteins analyzed, 33 proteins were differentially expressed in ACS patients when compared with control subjects/stable patients. A small group of seven proteins that appear to be altered at admission remain affected for 6 months and also in the stable CAD patients. Interestingly, the maximum number of altered proteins was observed in the stable CAD patients. Some of the proteins identified had been previously associated with ACS whereas others (such as Alpha-1-B-glycoprotein, Hakata antigen, Tetranectin, Tropomyosin 4) constitute novel proteins that are altered in this pathology.
  • Item
    Secretome analysis of atherosclerotic and non-atherosclerotic arteries reveals dynamic extracellular remodeling during pathogenesis
    (Journal of Proteome, 2012) Cuesta, Fernando de la; Barderas, Maria G.; Calvo, Enrique; Zubiri, Irene; Maroto, Aroa S.; Darde, Veronica M.; Martin-Rojas, Tatiana; Gil Dones, Félix; Posada-Ayala, Maria; Tejerina, Teresa; Lopez, Juan A.; Vivanco Martínez, Fernando; Álvarez Llamas, Gloria
    Aims: Early detection of cardiovascular diseases and knowledge of underlying mechanisms is essential. Tissue secretome studies resemble more closely to the in vivo situation, showing a much narrower protein concentrations dynamic range than plasma. This study was aimed to the analysis of human arterial tissue secretome and to the quantitative comparison of healthy and atherosclerotic secretome to discover proteins with key roles in atherosclerosis development. Methods and results: Secretomes from three biological replicates of human atherosclerotic coronary arteries (APC), preatherosclerotic coronaries (PC) and mammaries (M) were analyzed by LC-MS/MS. The identified proteins were submitted to Ingenuity Pathway Analysis (IPA) tool. Label-free MS/MS based quantification was performed and validated by immunohistochemistry. 64 proteins were identified in the 3 replicates of at least one of the 3 groups and 15 secreted proteins have not been previously reported in plasma. Four proteins were significantly released in higher amounts by mammary tissue: gelsolin, vinculin, lamin A/C and phosphoglucomutase 5. Conclusion: The study of tissue secretome reveals key proteins involved in atherosclerosis which have not been previously reported in plasma. Novel proteins are here highlighted which could be potential therapeutic targets in clinical practice. This article is part of a Special Issue entitled: Proteomics: The clinical link.