Person:
Maestro De Las Casas, María Del Carmen

Loading...
Profile Picture
First Name
María Del Carmen
Last Name
Maestro De Las Casas
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Óptica y Optometría
Department
Optometría y Visión
Area
Anatomía y Embriología Humana
Identifiers
UCM identifierScopus Author IDDialnet ID

Search Results

Now showing 1 - 2 of 2
  • Item
    Occurrence of cleft-palate and alteration of Tgf-β3 expression and the mechanisms leading to palatal fusion in mice following dietary folic-acid deficiency
    (Cells Tissues Organs, 2011) Maldonado Bautista, Estela; Murillo González, Jorge Alfonso; Barrio Asensio, María Del Carmen; Río Sevilla, Aurora Del; Pérez De Miguelsanz, María Juliana; López Gordillo, Yamila; Partearroyo, Teresa; Paradas Lara, Irene; Maestro De Las Casas, María Del Carmen; Martínez Sanz, Elena; Varela Moreiras, Gregorio; Martínez Álvarez, María Concepción
    Folic acid (FA) is essential for numerous bodily functions. Its decrease during pregnancy has been associated with an increased risk of congenital malformations in the progeny. The relationship between FA deficiency and the appearance of cleft palate (CP) is controversial, and little information exists on a possible effect of FA on palate development. We investigated the effect of a 2–8 weeks’ induced FA deficiency in female mice on the development of CP in their progeny as well as the mechanisms leading to palatal fusion, i.e. cell proliferation, cell death, and palatal-shelf adhesion and fusion. We showed that an 8 weeks’ maternal FA deficiency caused complete CP in the fetuses although a 2 weeks’ maternal FA deficiency was enough to alter all the mechanisms analyzed. Since transforming growth factor beta 3 (TGF-β3) is crucial for palatal fusion and since most of the mechanisms impaired by FA deficiency were also observed in the palates of Tgf-β3 null mutant mice, we investigated the presence of TGF-beta 3 mRNA, its protein and phospho-SMAD2 in FA-deficient (FAD) mouse palates. Our results evidenced a large reduction in Tgf-β3 expression in palates of embryos of dams fed an FAD diet for 8 weeks; Tgf-β3 expression was less reduced in palates of embryos of dams fed an FAD diet for 2 weeks. Addition of Tgf-β3 to palatal-shelf cultures of embryos of dams fed an FAD diet for 2 weeks normalized all the altered mechanisms. Thus, an insufficient folate status may be a risk factor for the development of CP in mice, and exogenous Tgf-β3 compensates this deficit in vitro.
  • Item
    A new technique for feeding dogs with a congenital cleft palate for surgical research
    (Laboratory Animals, 2011) López-Gordillo, Yamila et al.; González-Meli, B; Martínez Sanz, Elena; Casado Gómez, Inmaculada; Martín Álvaro, María Concepción; González Aranda, Pablo; Paradas Lara, Irene; Maldonado Bautista, Estela; Maestro De Las Casas, María Del Carmen; Prados Frutos, Juan Carlos; Martínez Álvarez, María Concepción
    In humans, cleft palate (CP) is one of the most common malformations. Although surgeons use palatoplasty to close CP defects in children, its consequences for subsequent facial growth have prompted investigations into other novel surgical alternatives. The animal models of CP used to evaluate new surgical treatments are frequently obtained by creating surgically induced clefts in adult dogs. This procedure has been ethically criticized due to its severity and questionable value as an animal model for human CP. Dogs born with a congenital CP would be much better for this purpose, provided they developed CP at a sufficient rate and could be fed. Up until now, feeding these pups carried the risk of aspiration pneumonia, while impeding normal suckling and chewing, and thus compromising orofacial growth. We developed a technique for feeding dog pups with CP from birth to the time of surgery using two old Spanish pointer dog pups bearing a complete CP. This dog strain develops CP in 15-20% of the offspring spontaneously. Custom-made feeding teats and palatal prostheses adapted to the pups' palates were made from thermoplastic plates. This feeding technique allowed lactation, eating and drinking in the pups with CP, with only sporadic rhinitis. To determine whether the use of this palatal prosthesis interferes with palatal growth, the palates of three littermate German shorthaired pointer pups without CP, either wearing or not wearing (controls) the prosthesis, were measured. The results showed that the permanent use of this prosthesis does not impede palatal growth in the pups.