Person:
Ballester Pérez, Antonio

Loading...
Profile Picture
First Name
Antonio
Last Name
Ballester Pérez
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Químicas
Department
Area
Ciencia de los Materiales e Ingeniería Metalúrgica
Identifiers
UCM identifierDialnet ID

Search Results

Now showing 1 - 2 of 2
  • Item
    Biosorption of Zn(II) from industrial effluents using sugar beet pulp and F . vesiculosus : From laboratory tests to a pilot approach
    (Science of Total Environment, 2017) Castro Ruiz, Laura; Blázquez Izquierdo, María Luisa; González González, Felisa; Muñoz Sánchez, Jesús Ángel; Ballester Pérez, Antonio
    The aim of this work was to demonstrate the feasibility of the application of biosorption in the treatment of metal polluted wastewaters through the development of several pilot plants to be implemented by the industry. The use as biosorbents of both the brown seaweed Fucus vesiculosus and a sugar beet pulp was investigated to remove heavy metal ions from a wastewater generated in an electroplating industry: Industrial Goñabe (Valladolid, Spain). Batch experiments were performed to study the effects of pH, contact time and initial metal concentration on metal biosorption. It was observed that the adsorption capacity of the biosorbents strongly depended on the pH, increasing as the pH rises from 2 to 5. The adsorption kinetic was studied using three models: pseudo first order, pseudo second order and Elovich models. The experimental data were fitted to Langmuir and Freundlich isotherm models and the brown alga F. vesiculosus showed higher metal uptake than the sugar beet pulp. The biomasses were also used for zinc removal in fixed-bed columns. The performance of the system was evaluated in different experimental conditions. The mixture of the two biomasses, the use of serial columns and the inverse flow can be interesting attempts to improve the biosorption process for large-scale applications.
  • Item
    Exploring the Possibilities of Biological Fabrication of Gold Nanostructures Using Orange Peel Extract
    (Metals, 2015) Castro Ruiz, Laura; Blázquez Izquierdo, María Luisa; González González, Felisa; Muñoz Sánchez, Jesús Ángel; Ballester Pérez, Antonio
    Development of nanotechnology requires a constant innovation and improvement in many materials. The exploration of natural resources is a promising eco-friendly alternative for physical and chemical methods. In the present work, colloidal gold nanostructures were prepared using orange peel extract as a stabilizing and reducing agent. The initial pH value of the solution and the concentration of the gold precursor had an effect on the formation and morphology of nanoparticles. The method developed is environmentally friendly and allows control of nanoparticles. By controlling the pH and, especially, the gold concentration, we are able to synthesize crystalline gold nanowires using orange peel extract in the absence of a surfactant or polymer to direct nanoparticle growth, and without external seeding. UV-VIS spectroscopy, transmission electron microscopy (TEM), and X-ray diffraction (XRD) were used to characterize the nanoparticles obtained by biosynthesis.