Person:
Melero Carrasco, Helena

Loading...
Profile Picture
First Name
Helena
Last Name
Melero Carrasco
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Psicología
Department
Psicobiología y Metodología en Ciencias del Comportamiento
Area
Psicobiología
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet IDGoogle Scholar ID

Search Results

Now showing 1 - 1 of 1
  • Item
    Real-time fMRI feedback impacts brain activation, results in auditory hallucinations reduction: Part 1: Superior temporal gyrus -Preliminary evidence-
    (Psychiatry Research, 2020) Okano, K.; Bauer, C. C.C.; Ghosh, S.S.; Lee, Y. J.; de los Angeles, C.; Nestor, P. G.; del Re, E. C.; Northoff, G.; Whitfield-Gabrieli, S.; Niznikiewicz, M. A.; Melero Carrasco, Helena
    Auditory hallucinations (AH) are one of the core symptoms of schizophrenia (SZ) and constitute a significant source of suffering and disability. One third of SZ patients experience pharmacology-resistant AH, so an alternative/complementary treatment strategy is needed to alleviate this debilitating condition. In this study, real-time functional Magnetic Resonance Imaging neurofeedback (rt-fMRI NFB), a non-invasive technique, was used to teach 10 SZ patients with pharmacology-resistant AH to modulate their brain activity in the superior temporal gyrus (STG), a key area in the neurophysiology of AH. A functional task was designed in order to provide patients with a specific strategy to help them modify their brain activity in the desired direction. Specifically, they received neurofeedback from their own STG and were trained to upregulate it while listening to their own voice recording and downregulate it while ignoring a stranger's voice recording. This guided performance neurofeedback training resulted in a) a significant reduction in STG activation while ignoring a stranger's voice, and b) reductions in AH scores after the neurofeedback session. A single, 21-minute session of rt-fMRI NFB was enough to produce these effects, suggesting that this approach may be an efficient and clinically viable alternative for the treatment of pharmacology-resistant AH.