Person:
Glahn Martínez, Ana Bettina

Loading...
Profile Picture
First Name
Ana Bettina
Last Name
Glahn Martínez
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Químicas
Department
Química Analítica
Area
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet IDGoogle Scholar ID

Search Results

Now showing 1 - 3 of 3
  • Item
    Molecular super-gluing: a straightforward tool for antibody labelling and its application to mycotoxin biosensing
    (Analytical and Bioanalytical Chemistry, 2022) Prádanas González, Fernando; Glahn Martínez, Ana Bettina; Benito Peña, María Elena; Arola, Henri O.; Nevanen, Tarja K.; Moreno Bondi, María Cruz
    Mycotoxins are low molecular weight toxic compounds, which can cause severe health problems in animals and humans. Immunoassays allow rapid, simple and cost-efective screening of mycotoxins. Sandwich assays with a direct readout provide great improvement in terms of selectivity and sensitivity, compared to the widely used competitive assay formats, for the analysis of low molecular weight molecules. In this work, we report a non-competitive fuorescence anti-immune complex (IC) immunoassay, based on the specifc recognition of HT-2 toxin with a pair of recombinant antibody fragments, namely antigen-binding fragment (Fab) (anti-HT-2 (10) Fab) and single-chain variable fragment (scFv) (anti-IC HT-2 (10) scFv). The SpyTag and SpyCatcher glue proteins were applied for the frst time as a bioconjugation tool for the analysis of mycotoxins. To this aim, a SpyTag-mScarlet-I (fuorescent protein) and scFv-SpyCatcher fusion proteins were constructed, produced and fused in situ during the assay by spontaneous Tag-Catcher binding. The assay showed an excellent sensitivity with an EC50 of 4.8±0.4 ng mL−1 and a dynamic range from 1.7±0.3 to 13±2 ng mL−1, an inter-day reproducibility of 8.5% and a high selectivity towards HT-2 toxin without cross-reactivity with other Fusarium toxins. The bioassay was applied to the analysis of the toxin in an oat reference material and in oat samples, with a LOD of 0.6 µg kg−1, and the results were validated by analysing a certifcate reference material and by HPLC–MS/MS.
  • Item
    Magnetic Janus micromotors for fluorescence biosensing of tacrolimus in oral fluids
    (Biosensors and Bioelectronics, 2024) Glahn Martínez, Ana Bettina; Jurado-Sánchez, Beatriz; Benito Peña, María Elena; Escarpa, Alberto; Moreno Bondi, María Cruz
    Tacrolimus (FK506) is a macrolide lactone immunosuppressive drug that is commonly used in transplanted patients to avoid organ rejection. FK506 exhibits high inter- and intra-patient pharmacokinetic variability, making monitoring necessary for organ graft survival. This work describes the development of a novel bioassay for monitoring FK506. The bioassay is based on using polycaprolactone-based (PCL) magnetic Janus micromotors and a recombinant chimera receptor that incorporates the immunophilin tacrolimus binding protein 1A (FKBP1A) tagged with Emerald Green Fluorescent Protein (EmGFP). The approach relies on a fluorescence competitive bioassay between the drug and the micromotors decorated with a carboxylated FK506 toward the specific site of the fluorescent immunophilin. The proposed homogeneous assay could be performed in a single step without washing steps to separate the unbound receptor. The proposed approach fits the therapeutic requirements, showing a limit of detection of 0.8 ng/mL and a wide dynamic range of up to 90 ng/mL. Assay selectivity was evaluated by measuring the competitive inhibition curves with other immunosuppressive drugs usually co-administered with FK506. The magnetic propulsion mechanism allows for efficient operation in raw samples without damaging the biological binding receptor (FKBP1A-EmGFP). The enhanced target recognition and micromixing strategies hold considerable potential for FK506 monitoring in practical clinical use.
  • Item
    Sensitive rapid fluorescence polarization immunoassay for free mycophenolic acid determination in human serum and plasma
    (Analytical Chemistry, 2018) Glahn Martínez, Ana Bettina; Benito Peña, María Elena; Salis, Francesca; Descalzo López, Ana Belén; Orellana Moraleda, Guillermo; Moreno Bondi, María Cruz
    In this Article, we describe a fluorescence polarization immunoassay (FPIA) using a new label-near infrared fluorescent dye. The developed FPIA method was optimized for the rapid analysis of free mycophenolic acid (MPA) in plasma of transplanted patients. The approach is based on the fluorescence competitive assay between the target immunosuppressant and a novel emissive near-infrared fluorescent dye-tagged MPA and MPA-AO for the binding sites of the anti-MPA antibody. The fluorescent analogue of MPA exhibits emission at 654 nm upon excitation at 629 nm (λexcmax) and shows a good photochemical stability and a significant emission quantum yield (0.16) in phosphate buffer media. Free mycophenolic acid was isolated from blood or plasma samples using ultrafiltration prior to analysis. The sample was incubated for 20 min with 5 μg/mL of anti-MPA antibody and 1 nM of MPA-AO before the measurements. The developed FPIA displays a limit of detection of 0.8 ng/mL (10% binding inhibition) and a dynamic range of 1.7−39 ng/mL (20%−80% binding inhibition) in a PBST buffer, fitting the therapeutic requirements. The immunoassay selectivity was evaluated by measuring the cross-reactivity to other immunosuppressive drugs administered in combination with MPA (cyclosporin A and tacrolimus), as well as for the metabolite MPA glucuronide. The assay has been successfully applied to the analysis of free MPA in the blood of a heart-transplanted patient after oral administration of both mycophenolate mofetil (MMF) and tacrolimus, and the results have been compared with those obtained by rapid-resolution liquid chromatography with diode array detection (RRLC-DAD).