Person:
Cañadas Benito, Olga

Loading...
Profile Picture
First Name
Olga
Last Name
Cañadas Benito
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Biológicas
Department
Bioquímica y Biología Molecular
Area
Bioquímica y Biología Molecular
Identifiers
UCM identifierORCIDScopus Author IDDialnet ID

Search Results

Now showing 1 - 10 of 13
  • Item
    Surfactant protein A forms extensive lattice-like structures on 1,2-dipalmitoylphosphatidylcholine/rough-lipopolysaccharide-mixed monolayers
    (Biophysical Journal, 2007) García-Verdugo, I.; Cañadas Benito, Olga; Taneva, S.G.; Keough, K.M.; Casals, C
    Due to the inhalation of airborne particles containing bacterial lipopolysaccharide (LPS), these molecules might incorporate into the 1,2-dipalmitoylphosphatidylcholine (DPPC)-rich monolayer and interact with surfactant protein A (SP-A), the major surfactant protein component involved in host defense. In this study, epifluorescence microscopy combined with a surface balance was used to examine the interaction of SP-A with mixed monolayers of DPPC/rough LPS (Re-LPS). Binary monolayers of Re-LPS plus DPPC showed negative deviations from ideal behavior of the mean areas in the films consistent with partial miscibility and attractive interaction between the lipids. This interaction resulted in rearrangement and reduction of the size of DPPC-rich solid domains in DPPC/Re-LPS monolayers. The adsorption of SP-A to these monolayers caused expansion in the lipid molecular areas. SP-A interacted strongly with Re-LPS and promoted the formation of DPPC-rich solid domains. Fluorescently labeled Texas red-SP-A accumulated at the fluid-solid boundary regions and formed networks of interconnected filaments in the fluid phase of DPPC/Re-LPS monolayers in a Ca21-independent manner. These lattice-like structures were also observed when TR-SP-A interacted with lipid A monolayers. These novel results deepen our understanding of the specific interaction of SP-A with the lipid A moiety of bacterial LPS
  • Item
    Characterization of liposomal tacrolimus in lung surfactant-like phospholipids and evaluation of its immunosuppressive activity.
    (Biochemistry, 2004) Cañadas Benito, Olga; Guerrero, R; García-Cañero, R; Orellana Moraleda, Guillermo; Menéndez, M; Casals Carro, María Cristina
    Tacrolimus (FK506) is a hydrophobic immunosuppressive agent that rapidly penetrates the plasmatic membrane and inhibits the signal transduction cascade of T lymphocytes. The objective of this study was the characterization of liposomal FK506 with surfactant-like phospholipids to be administered intratracheally after lung transplantation or in inflammatory lung diseases. We evaluated the optimal incorporation of FK506 in dipalmitoylphosphatidylcholine (DPPC) and DPPC/1-palmitoyl-2-oleoylphosphatidylglycerol (POPG) monolayers and bilayers and the effects of FK506 on the physical properties of DPPC and DPPC/POPG (8:2 w/w) vesicles. In addition, we assessed the immunosuppressive effects of surfactant-like phospholipid vesicles containing different amounts of FK506 on T-cell proliferation and interleukin 2 production. From surface pressure measurements of FK506/DPPC and FK506/DPPC/POPG mixed monolayers, we determined that FK506 was embedded into these monolayers up to an FK506 concentration of about 0.4 mol %. Beyond this concentration, FK506 was not quantitatively incorporated into the monolayer, suggesting possible concentration-dependent aggregation of tacrolimus. The incorporation of FK506 into DPPC monolayers, at concentrations
  • Item
    Role of lipid ordered/disordered phase coexistence in pulmonary surfactant function
    (Biochimica et Biophysica Acta (BBA) - Biomembranes, 2012) Casals Carro, María Cristina; Cañadas Benito, Olga
    The respiratory epithelium has evolved to produce a complicated network of extracellular membranes that are essential for breathing and, ultimately, survival. Surfactant membranes form a stable monolayer at the air-liquid interface with bilayer structures attached to it. By reducing the surface tension at the air-liquid interface, surfactant stabilizes the lung against collapse and facilitates inflation. The special composition of surfactant membranes results in the coexistence of two distinct micrometer-sized ordered/disordered phases maintained up to physiological temperatures. Phase coexistence might facilitate monolayer folding to form three-dimensional structures during exhalation and hence allow the film to attain minimal surface tension. These folded structures may act as a membrane reserve and attenuate the increase in membrane tension during inspiration. The present review summarizes what is known of ordered/disordered lipid phase coexistence in lung surfactant, paying attention to the possible role played by domain boundaries in the monolayer-to-multilayer transition, and the correlations of biophysical inactivation of pulmonary surfactant with alterations in phase coexistence.
  • Item
    Bacterial lipopolysaccharide promotes destabilization of lung surfactant-like films
    (Biophysical Journal, 2011) Cañadas Benito, Olga; Keough, Kevin M.W.; Casals Carro, María Cristina
    The airspaces are lined with a dipalmitoylphosphatidylcholine (DPPC)-rich film called pulmonary surfactant, which is named for its ability to maintain normal respiratory mechanics by reducing surface tension at the air-liquid interface. Inhaled airborne particles containing bacterial lipopolysaccharide (LPS) may incorporate into the surfactant monolayer. In this study, we evaluated the effect of smooth LPS (S-LPS), containing the entire core oligosaccharide region and the O-antigen, on the biophysical properties of lung surfactant-like films composed of either DPPC or DPPC/palmitoyloleoylphosphatidylglycerol (POPG)/palmitic acid (PA) (28:9:5.6, w/w/w). Our results show that low amounts of S-LPS fluidized DPPC monolayers, as demonstrated by fluorescence microscopy and changes in the compressibility modulus. This promoted early collapse and prevented the attainment of high surface pressures. These destabilizing effects could not be relieved by repeated compression-expansion cycles. Similar effects were observed with surfactant-like films composed of DPPC/POPG/PA. On the other hand, the interaction of SP-A, a surfactant membrane-associated alveolar protein that also binds to LPS, with surfactant-like films containing S-LPS increased monolayer destabilization due to the extraction of lipid molecules from the monolayer, leading to the dissolution of monolayer material in the aqueous subphase. This suggests that SP-A may act as an LPS scavenger.
  • Item
    The interplay of lung surfactant proteins and lipids assimilates the macrophage clearance of nanoparticles
    (PLoS One, 2012) Ruge, C.A.; Schaefer, U.F.; Herrmann, J.; Kirch, J.; Cañadas Benito, Olga; Echaide Torreguitar, Mercedes; Pérez Gil, Jesús; Casals Carro, María Jesús; Müller, R.; Lehr, C.M.
    The peripheral lungs are a potential entrance portal for nanoparticles into the human body due to their large surface area. The fact that nanoparticles can be deposited in the alveolar region of the lungs is of interest for pulmonary drug delivery strategies and is of equal importance for toxicological considerations. Therefore, a detailed understanding of nanoparticle interaction with the structures of this largest and most sensitive part of the lungs is important for both nanomedicine and nanotoxicology. Astonishingly, there is still little known about the bio-nano interactions that occur after nanoparticle deposition in the alveoli. In this study, we compared the effects of surfactant-associated protein A (SP-A) and D (SP-D) on the clearance of magnetite nanoparticles (mNP) with either more hydrophilic (starch) or hydrophobic (phosphatidylcholine) surface modification by an alveolar macrophage (AM) cell line (MH-S) using flow cytometry and confocal microscopy. Both proteins enhanced the AM uptake of mNP compared with pristine nanoparticles; for the hydrophilic ST-mNP, this effect was strongest with SP-D, whereas for the hydrophobic PL-mNP it was most pronounced with SP-A. Using gel electrophoretic and dynamic light scattering methods, we were able to demonstrate that the observed cellular effects were related to protein adsorption and to protein-mediated interference with the colloidal stability. Next, we investigated the influence of various surfactant lipids on nanoparticle uptake by AM because lipids are the major surfactant component. Synthetic surfactant lipid and isolated native surfactant preparations significantly modulated the effects exerted by SP-A and SP-D, respectively, resulting in comparable levels of macrophage interaction for both hydrophilic and hydrophobic nanoparticles. Our findings suggest that because of the interplay of both surfactant lipids and proteins, the AM clearance of nanoparticles is essentially the same, regardless of different intrinsic surface properties.
  • Item
    Targeting of key pathogenic factors from gram-positive bacteria by the soluble ectodomain of the scavenger-like lymphocyte receptor CD6
    (The Journal of Infectious Diseases, 2014) Martínez-Florensa, Mario; Consuegra-Fernández, Marta; Martínez, Vanessa G.; Cañadas Benito, Olga; Armiger-Borràs, Noelia; Bonet-Roselló, Lizette; Farrán, Aina; Vila, Jordi; Casals Carro, María Cristina; Lozano, Francisco
    Gram-positive bacteria cause a broad spectrum of infection-related diseases in both immunocompetent and immunocompromised hosts, ranging from localized infections to severe systemic conditions such as septic and toxic shock syndromes. This situation has been aggravated by the recent emergence of multidrug-resistant strains, thus stressing the need for alternative therapeutic approaches. One such possibility would be modulating the host's immune response. Herein, the potential use of a soluble form of the scavenger-like human lymphocyte receptor CD6 (shCD6) belonging to an ancient family of innate immune receptors has been evaluated. shCD6 can bind to a broad spectrum of gram-positive bacteria thanks to the recognition of highly conserved cell wall components (lipoteichoic acid [LTA] and peptidoglycan [PGN]), which are essential for their viability and pathogenicity and are not amenable to antibiotic resistance. shCD6 has in vitro inhibitory effects on both bacterial growth and Toll-like receptor-mediated inflammatory response induced by LTA plus PGN. In vivo infusion of shCD6 improves survival on mouse models of septic shock by Staphylococcus aureus (either multidrug-resistant or -sensitive) or their endotoxins (LTA + PGN) or exotoxins (TSST-1). These results support the use of shCD6 and/or other scavenger-like immune receptors in the treatment of severe gram-positive-induced infectious conditions.
  • Item
    Physical properties and surface activity of surfactant-like membranes containing the cationic and hydrophobic peptide KL4
    (The FEBS Journal, 2006) Sáenz, Alejandra; Cañadas Benito, Olga; Bagatolli, Luís A.; Johnson, Mark E.; Casals Carro, María Cristina
    Surfactant-like membranes containing the 21-residue peptide KLLLLKLLLLKLLLLKLLLLK (KL4), have been clinically tested as a therapeutic agent for respiratory distress syndrome in premature infants. The aims of this study were to investigate the interactions between the KL4 peptide and lipid bilayers, and the role of both the lipid composition and KL4 structure on the surface adsorption activity of KL4-containing membranes. We used bilayers of three-component systems [1,2-dipalmitoyl-phosphatidylcholine ⁄ 1-palmitoyl-2-oleoyl-phosphatidylglycerol ⁄ palmitic acid (DPPC⁄POPG⁄ PA) and DPPC⁄ 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) ⁄PA] and binary lipid mixtures of DPPC⁄POPG and DPPC⁄PA to examine the specific interaction of KL4 with POPG and PA. We found that, at low peptide concentrations, KL4 adopted a predominantly a-helical secondary structure in POPG- or POPC-containing membranes, and a b-sheet structure in DPPC⁄PA vesicles. As the concentration of the peptide increased, KL4 interconverted to a b-sheet structure in DPPC⁄POPG⁄PA or DPPC⁄POPC⁄PA vesicles. Ca2+ favored a«b interconversion. This conformational flexibility of KL4 did not influence the surface adsorption activity of KL4-containing vesicles. KL4 showed a concentration-dependent ordering effect on POPG- and POPC-containing membranes, which could be linked to its surface activity. In addition, we found that the physical state of the membrane had a critical role in the surface adsorption process. Our results indicate that the most rapid surface adsorption takes place with vesicles showing well-defined solid ⁄ fluid phase co-existence at temperatures below their gel to fluid phase transition temperature, such as those of DPPC⁄POPG⁄PA and DPPC⁄POPC⁄ PA. In contrast, more fluid (DPPC⁄POPG) or excessively rigid (DPPC⁄ PA) KL4-containing membranes fail in their ability to adsorb rapidly onto and spread at the air–water interface.
  • Item
    SP-A permeabilizes lipopolysaccharide membranes by forming protein aggregates that extract lipids from the membrane
    (Biophysical Journal, 2008) Cañadas Benito, Olga; García Verdugo, Ignacio; Keough, Kevin M. W.; Casals Carro, María Cristina; Axelsen, Paul H.
    Surfactant protein A (SP-A) is known to cause bacterial permeabilization. The aim of this work was to gain insight into the mechanism by which SP-A induces permeabilization of rough lipopolysaccharide (Re-LPS) membranes. In the presence of calcium, large interconnected aggregates of fluorescently labeled TR-SP-A were observed on the surface of Re-LPS films by epifluorescence microscopy. Using Re-LPS monolayer relaxation experiments at constant surface pressure, we demonstrated that SP-A induced Re-LPS molecular loss by promoting the formation of three-dimensional lipid-protein aggregates in Re-LPS membranes. This resulted in decreased van der Waals interactions between Re-LPS acyl chains, as determined by differential scanning calorimetry, which rendered the membrane leaky. We also showed that the coexistence of gel and fluid lipid phases within the Re-LPS membrane conferred susceptibility to SP-A-mediated permeabilization. Taken together, our results seem to indicate that the calcium-dependent permeabilization of Re-LPS membranes by SP-A is related to the extraction of LPS molecules from the membrane due to the formation of calcium-mediated protein aggregates that contain LPS.
  • Item
    Pulmonary surfactant protein A-mediated enrichment of surface-decorated polymeric nanoparticles in alveolar macrophages
    (Molecular Pharmaceutics, 2016) Ruge, Christian A.; Hillaireau, Hervé; Grabowski, Nadège; Beck-Broichsitter, Mortiz; Cañadas Benito, Olga; Tsapis, Nicolas; Casals Carro, María Cristina; Nicolas, Julien; Fattal, Elias
    Surfactant protein A (SP-A), a lung anti-infective protein, is a lectin with affinity for sugars found on fungal and micrococcal surfaces such as mannose. We synthesized a mannosylated poly(lactic acid)-poly(ethylene glycol) (PLA-PEG) copolymer and used it to produce nanoparticles with a polyester (PLGA/PLA) core and a PEG shell decorated with mannose residues, designed to be strongly associated with SP-A for an increased uptake by alveolar macrophages. Nanoparticles made of the copolymers were obtained by nanoprecipitation and displayed a size of around 140 nm. The presence of mannose on the surface was demonstrated by zeta potential changes according to pH and by a strong aggregation in the presence of concanavalin A. Mannosylated nanoparticles bound to SP-A as demonstrated by dynamic light scattering and transmission electron microscopy. The association with SP-A increased nanoparticle uptake by THP-1 macrophages in vitro. In vivo experiments demonstrated that after intratracheal administration of nanoparticles with or without SP-A, SP-A-coated mannosylated nanoparticles were internalized by alveolar macrophages in greater proportion than SP-A-coated nonmannosylated nanoparticles. The data demonstrate for the first time that the pool of nanoparticles available to lung cells can be changed after surface modification, using a biomimetic approach.
  • Item
    The CD5 ectodomain interacts with conserved fungal cell wall components and protects from zymosan-induced septic shock-like syndrome
    (PNAS (Proceedings of the National Academy of Sciences), 2009) Vera, Jorge; Fenutría, Rafael; Cañadas Benito, Olga; Figueras, Maite; Mota, Rubén; Sarrias, Maria Rosa; Williams, David L.; Casals Carro, María Cristina; Yelamos, José; Lozano, Francisco
    The CD5 lymphocyte surface receptor is a group B member of the ancient and highly conserved scavenger receptor cysteine-rich superfamily. CD5 is expressed on mature T and B1a cells, where it is known to modulate lymphocyte activation and/or differentiation processes. Recently, the interaction of a few group B SRCR members (CD6, Spalpha, and DMBT1) with conserved microbial structures has been reported. Protein binding assays presented herein indicate that the CD5 ectodomain binds to and aggregates fungal cells (Schizosaccharomyces pombe, Candida albicans, and Cryptococcus neoformans) but not to Gram-negative (Escherichia coli) or Gram-positive (Staphylococcus aureus) bacteria. Accordingly, the CD5 ectodomain binds to zymosan but not to purified bacterial cell wall constituents (LPS, lipotheicoic acid, or peptidoglycan), and such binding is specifically competed by beta-glucan but not by mannan. The K(d) of the rshCD5/(1-->3)-beta-d-glucan phosphate interaction is 3.7 +/- 0.2 nM as calculated from tryptophan fluorescence data analysis of free and bound rshCD5. Moreover, zymosan binds to membrane-bound CD5, and this induces both MAPK activation and cytokine release. In vivo validation of the fungal binding properties of the CD5 ectodomain is deduced from its protective effect in a mouse model of zymosan-induced septic shock-like syndrome. In conclusion, the present results indicate that the CD5 lymphocyte receptor may sense the presence of conserved fungal components [namely, (1-->3)-beta-d-glucans] and support the therapeutic potential of soluble CD5 forms in fungal sepsis.