Person:
Cañadas Benito, Olga

Loading...
Profile Picture
First Name
Olga
Last Name
Cañadas Benito
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Biológicas
Department
Bioquímica y Biología Molecular
Area
Bioquímica y Biología Molecular
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet ID

Search Results

Now showing 1 - 2 of 2
  • Item
    Conserved bacterial-binding peptides of the scavenger-like human lymphocyte receptor CD6 protect from mouse experimental sepsis
    (Frontiers in Immunology, 2018) Martínez Florensa, Mario; Català, Cristina; Velasco de Andrés, María; Cañadas Benito, Olga; Fraile Ágreda, Víctor; Casadó Llombart, Sergi; Armiger Borràs, Noelia; Consuegra Fernández, Marta; Casals Carro, María Cristina; Lozano, Francisco; Kishore, Uday
    Sepsis is an unmet clinical need constituting one of the most important causes of death worldwide, a fact aggravated by the appearance of multidrug resistant strains due to indiscriminate use of antibiotics. Host innate immune receptors involved in pathogen-associated molecular patterns (PAMPs) recognition represent a source of broad-spectrum therapies alternative or adjunctive to antibiotics. Among the few members of the ancient and highly conserved scavenger receptor cysteine-rich superfamily (SRCR-SF) sharing bacterial-binding properties there is CD6, a lymphocyte-specific surface receptor. Here, we analyze the bacterial-binding properties of three conserved short peptides (11-mer) mapping at extracellular SRCR domains of human CD6 (CD6.PD1, GTVEVRLEASW; CD6.PD2 GRVEMLEHGEW; and CD6.PD3, GQVEVHFRGVW). All peptides show high binding affinity for PAMPs from Gram-negative (lipopolysaccharide; Kd from 3.5 to 3,000 nM) and Gram-positive (lipoteichoic acid; Kd from 36 to 680 nM) bacteria. The CD6.PD3 peptide possesses broad bacterial-agglutination properties and improved survival of mice undergoing polymicrobial sepsis in a dose- and time-dependent manner. Accordingly, CD6.PD3 triggers a decrease in serum levels of both pro-inflammatory cytokines and bacterial load. Interestingly, CD6.PD3 shows additive survival effects on septic mice when combined with Imipenem/Cilastatin. These results illustrate the therapeutic potential of peptides retaining the bacterial-binding properties of native CD6.
  • Item
    Synergistic action of antimicrobial lung proteins against Klebsiella pneumoniae
    (International Journal of Molecular Sciences, 2021) Fraile Ágreda, Víctor; Cañadas Benito, Olga; Weaver, Timothy E.; Casals Carro, Cristina
    As key components of innate immunity, lung antimicrobial proteins play a critical role in warding off invading respiratory pathogens. Lung surfactant protein A (SP-A) exerts synergistic antimicrobial activity with the N-terminal segment of the SP-B proprotein (SP-BN) against Klebsiella pneumoniae K2 in vivo. However, the factors that govern SP-A/SP-BN antimicrobial activity are still unclear. The aim of this study was to identify the mechanisms by which SP-A and SP-BN act synergistically against K. pneumoniae, which is resistant to either protein alone. The effect of these proteins on K. pneumoniae was studied by membrane permeabilization and depolarization assays and transmission electron microscopy. Their effects on model membranes of the outer and inner bacterial membranes were analyzed by differential scanning calorimetry and membrane leakage assays. Our results indicate that the SP-A/SP-BN complex alters the ultrastructure of K. pneumoniae by binding to lipopolysaccharide molecules present in the outer membrane, forming packing defects in the membrane that may favor the translocation of both proteins to the periplasmic space. The SP-A/SP-BN complex depolarized and permeabilized the inner membrane, perhaps through the induction of toroidal pores. We conclude that the synergistic antimicrobial activity of SP-A/SP-BN is based on the capability of this complex, but not either protein alone, to alter the integrity of bacterial membranes.