Person:
Muñoz Céspedes, Alberto

Loading...
Profile Picture
First Name
Alberto
Last Name
Muñoz Céspedes
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Biológicas
Department
Biología Celular
Area
Biología Celular
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet ID

Search Results

Now showing 1 - 2 of 2
  • Item
    Pyramidal cell axon initial segment in Alzheimer´s disease
    (Scientific Reports, 2022) Antón-Fernández, Alejandro; León-Espinosa, Gonzalo; DeFelipe, Javier; Muñoz Céspedes, Alberto
    The axon initial segment (AIS) is a region of the neuron that is critical for action potential generation as well as for the regulation of neural activity. This specialized structure—characterized by the expression of different types of ion channels as well as adhesion, scaffolding and cytoskeleton proteins—is subjected to morpho-functional plastic changes in length and position upon variations in neural activity or in pathological conditions. In the present study, using immunocytochemistry with the AT8 antibody (phospho-tau S202/T205) and 3D confocal microscopy reconstruction techniques in brain tissue from Alzheimer’s disease patients, we found that around half of the cortical pyramidal neurons with hyperphosphorylated tau showed changes in AIS length and position in comparison with AT8-negative neurons from the same cortical layers. We observed a wide variety of AIS alterations in neurons with hyperphosphorylated tau, although the most common changes were a proximal shift or a lengthening of the AISs. Similar results were found in neocortical tissue from non-demented cases with neurons containing hyperphosphorylated tau. These findings support the notion that the accumulation of phospho-tau is associated with structural alterations of the AIS that are likely to have an impact on normal neuronal activity, which might contribute to neuronal dysfunction in AD.
  • Item
    Microanatomical study of pyramidal neurons in the contralesional somatosensory cortex after experimental ischemic stroke
    (Cerebral Cortex, 2022) Merino Serrais, Paula; Plaza Alonso, Sergio; Hellal, Farida; Valero Freitag, Susana; Kastanauskaite, Asta; Muñoz Céspedes, Alberto; Plesnila, Nikolaus; Felipe, Javier de
    At present, many studies support the notion that after stroke, remote regions connected to the infarcted area are also affected and may contribute to functional outcome. In the present study, we have analyzed possible microanatomical alterations in pyramidal neurons from the contralesional hemisphere after induced stroke. We performed intracellular injections of Lucifer yellow in pyramidal neurons from layer III in the somatosensory cortex of the contralesional hemisphere in an ischemic stroke mouse model. A detailed 3-dimensional analysis of the neuronal complexity and morphological alterations of dendritic spines was then performed. Our results demonstrate that pyramidal neurons from layer III in the somatosensory cortex of the contralesional hemisphere show selective changes in their dendritic arbors, namely, less dendritic complexity of the apical dendritic arbor—but no changes in the basal dendritic arbor. In addition, we found differences in spine morphology in both apical and basal dendrites comparing the contralesional hemisphere with the lesional hemisphere. Our results show that pyramidal neurons of remote areas connected to the infarct zone exhibit a series of selective changes in neuronal complexity and morphological distribution of dendritic spines, supporting the hypothesis that remote regions connected to the peri-infarcted area are also affected after stroke.