Person:
Michalska Dziama, Patrycja

Loading...
Profile Picture
First Name
Patrycja
Last Name
Michalska Dziama
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Farmacia
Department
Química en Ciencias Farmacéuticas
Area
Identifiers
UCM identifierORCIDScopus Author IDDialnet IDGoogle Scholar ID

Search Results

Now showing 1 - 5 of 5
  • Item
    Compounds derived from 3-Alkylamino-1H-indole acrylate, and the use thereof in the treatment of neurodegenerative diseases.
    (2015) León Martínez, Rafael; Buendia Abaitua, Izaskun; Navarro González De Mesa, Elisa; Michalska Dziama, Patrycja; Gameiro Ros, Isabel; López Vivo, Alicia; Egea Máiquez, Francisco Javier; García López, Manuel; García García, Juan Antonio; Fundacioó para la investigación biomédica del Hospital Universitario de La Princesa
    The inventions relates to the methods for producing derivatives of 3-alkylamino-1-H indole acrylate (I) with transcription factor Nrf2-inducing activity, free radical scavenging activity and neuroprotective ability. The invention also relates to the use of derivatives according to the invention for the treatment of diseases, the pathogenesis of which involves oxidative stress, or diseases involving the deregulation of the activity of phase II genes activated by the factor Nrf2 such as Alzheimer´s disease, Parkinson´s disease, Huntington´s disease, multiple sclerosis, ictus or amyotrophic lateral sclerosis.
  • Item
    Compuestos derivados de acrilato de 3-alquilamino-1H-indolilo y su uso en el tratamiento de las enfermeadades neurodegenerativas
    (2016) León Martínez, Rafael; Buendia Abaitua, Izaskun; Navarro González De Mesa, Elisa; Michalska Dziama, Patrycja; Gameiro Ros, Isabel; Egea Máiquez, Franisco Javier; García Lopez, Manuela; García García, Juan Antonio; Fundacion para la investigacion biomedica del Hospital Universitario de La Princesa
    The invent relates to the methods for producing derivates of 3-alkylamino-1H-indole acrylate(I) with transcription factor Nrf2-inducing activity, free radical scavenging activity and neuroprotective ability. The invention also relates to the use of derivatives according to the invention of treatment of diseases, the pathogenesis of which involves oxidative stress, or diseases involving the deregulationof the activity of phase II genes activated by the factor Nrf2, such as Alzheimer´s disease, Parkinson´s disease, Huntington´s disease, multiple sclerosis, ictus or amyotrophic lateral sclerosis.
  • Item
    New melatonin–cinnamate hybrids as multi-target drugs for neurodegenerative diseases: Nrf2-induction, antioxidant effect and neuroprotection
    (Future Medicinal Chemistry, 2015) Buendia, Izaskun; Navarro González De Mesa, Elisa; Michalska Dziama, Patrycja; Gameiro, Isabel; Egea, Javier; Abril, Sheila; López, Alicia; González-Lafuente, Laura; G. López, Manuela; León Martínez, Rafael
    Neurodegenerative diseases share many pathological pathways, such as abnormal protein aggregation, mitochondrial dysfunction, extensive oxidative stress and neuroinflammation. Cells have an intrinsic mechanism of protection, the Nrf2 transcriptional factor, known as the master regulator of redox homeostasis. Results: Based on the common features of these diseases we have designed a multi-target hybrid structure derived from melatonin and ethyl cinnamate. The obtained derivatives were Nrf2 inducers and potent-free radical scavengers. These new compounds showed a very interesting neuroprotective profile in several in vitro models of oxidative stress, Alzheimer's disease and brain ischemia. Conclusion: We have designed a new hybrid structure with complementary activities. We have identified compound 5h as an interesting Nrf2 inducer, very potent antioxidant and neuroprotectant.
  • Item
    Compounds derived from 3-Alkylamino-1H-indole acrylate, and the use thereof in the treatment of neurodegenerative diseases.
    (2015) León Martínez, Rafael; Buendia Abaitua, Izaskun; Navarro González De Mesa, Elisa; Michalska Dziama, Patrycja; Gameiro Ros, Isabel Marina; López Vivo, Alicia; Egea Máiquez, Francisco Javier; García López, Manuela; García García, Juan Antonio; Fundación para la investigación biomédica del Hospital Universitario de La Princesa
    The inventions relates to the methods for producing derivatives of 3-alkylamino-1-H indole acrylate (I) with transcription factor Nrf2-inducing activity, free radical scavenging activity and neuroprotective ability. The invention also relates to the use of derivatives according to the invention for the treatment of diseases, the pathogenesis of which involves oxidative stress, or diseases involving the deregulation of the activity of phase II genes activated by the factor Nrf2 such as Alzheimer´s disease, Parkinson´s disease, Huntington´s disease, multiple sclerosis, ictus or amyotrophic lateral sclerosis.
  • Item
    Nrf2–ARE pathway: An emerging target against oxidative stress and neuroinflammation in neurodegenerative diseases
    (Pharmacology & Therapeutics, 2016) Buendia, Izaskun; Michalska Dziama, Patrycja; Navarro González De Mesa, Elisa; Gameiro, Isabel; Egea, Javier; León Martínez, Rafael
    Neurodegenerative diseases (NDDs) are predicted to be the biggest health concern in this century and the second leading cause of death by 2050. The main risk factor of these diseases is aging, and as the aging population in Western societies is increasing, the prevalence of these diseases is augmenting exponentially. Despite the great efforts to find a cure, current treatments remain ineffective or have low efficacy. Increasing lines of evidence point to exacerbated oxidative stress, mitochondrial dysfunction and chronic neuroinflammation as common pathological mechanisms underlying neurodegeneration. We will address the role of the nuclear factor E2-related factor 2 (Nrf2) as a potential target for the treatment of NDDs. The Nrf2–ARE pathway is an intrinsic mechanism of defence against oxidative stress. Nrf2 is a transcription factor that induces the expression of a great number of cytoprotective and detoxificant genes. There are many evidences that highlight the protective role of the Nrf2–ARE pathway in neurodegenerative conditions, as it reduces oxidative stress and neuroinflammation. Therefore, the Nrf2 pathway is being increasingly considered a therapeutic target for NDDs. Herein we will review the deregulation of the Nrf2 pathway in different NDDs and the recent studies with Nrf2 inducers as “proof-of-concept” for the treatment of those devastating pathologies.