Person:
Navas Hernández, María Ángeles

Loading...
Profile Picture
First Name
María Ángeles
Last Name
Navas Hernández
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Medicina
Department
Bioquímica y Biología Molecular
Area
Bioquímica y Biología Molecular
Identifiers
UCM identifierORCIDScopus Author IDDialnet ID

Search Results

Now showing 1 - 2 of 2
  • Item
    Coiled-coil-mediated dimerization of Atg16 is required for binding to the PROPPIN Atg21
    (Open Biology, 2023) Bueno Arribas, Miranda; Cruz Cuevas, Celia; Navas Hernández, María Ángeles; Escalante, Ricardo; Vincent, Olivier
    PROPPINs/WIPIs are β-propeller proteins that bind phosphoinositides and contribute to the recruitment of protein complexes involved in membrane remodelling processes such as autophagosome formation and endosomal trafficking. Yeast Atg21 and mammalian WIPI2 interact with Atg16/ATG16L1 to mediate recruitment of the lipidation machinery to the autophagosomal membrane. Here, we used the reverse double two-hybrid method (RD2H) to identify residues in Atg21 and Atg16 critical for protein–protein binding. Although our results are generally consistent with the crystal structure of the Atg21-Atg16 complex reported previously, they also reveal that dimerization of the Atg16 coiled-coil domain is required for Atg21 binding. Furthermore, most of the residues identified in Atg21 are conserved in WIPI2 and we showed that these residues also mediate ATG16L1 binding. Strikingly, these residues occupy the same position in the β-propeller structure as residues in PROPPINs/WIPIs Hsv2 and WIPI4 that mediate Atg2/ATG2A binding, supporting the idea that these proteins use different amino acids at the same position to interact with different autophagic proteins. Finally, our findings demonstrate the effectiveness of the RD2H system to identify critical residues for protein–protein interactions and the utility of this method to generate combinatory mutants with a complete loss of binding capacity.
  • Item
    The WIPI Gene Family and Neurodegenerative Diseases: Insights From Yeast and Dictyostelium Models
    (Frontiers in Cell and Developmental Biology, 2021) Vincent, Olivier; Antón Esteban, Laura; Bueno Arribas, Miranda; Tornero Écija, Alba; Navas Hernández, María Ángeles; Escalante, Ricardo
    WIPIs are a conserved family of proteins with a characteristic 7-bladed β-propeller structure. They play a prominent role in autophagy, but also in other membrane trafficking processes. Mutations in human WIPI4 cause several neurodegenerative diseases. One of them is BPAN, a rare disease characterized by developmental delay, motor disorders, and seizures. Autophagy dysfunction is thought to play an important role in this disease but the precise pathological consequences of the mutations are not well established. The use of simple models such as the yeast Saccharomyces cerevisiae and the social amoeba Dictyostelium discoideum provides valuable information on the molecular and cellular function of these proteins, but also sheds light on possible pathways that may be relevant in the search for potential therapies. Here, we review the function of WIPIs as well as disease-causing mutations with a special focus on the information provided by these simple models.