Person:
Pinelli, Alfredo

Loading...
Profile Picture
First Name
Alfredo
Last Name
Pinelli
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Matemáticas
Department
Area
Matemática Aplicada
Identifiers
UCM identifierDialnet ID

Search Results

Now showing 1 - 4 of 4
  • Item
    LES and RANS simulations of the MUST experiment. Study of incident wind direction effects on the flow and plume dispersion
    (7th International Conference on Urban Climate, 2007) Santiago, J. L.; Dejoan, A.; Martilli, A.; Martín , F.; Pinelli, Alfredo
    In this study, we propose to assess and compare the performance of LES and RANS methodologies for the simulation of pollutant dispersion in an urban environment by making use of field and wind tunnel measurements of the MUST experiment configuration. First, the proposed analysis addresses the relevance of taking into account the small geometrical irregularities of the obstacle array in the computations. For this, local and spatial averaged time mean flow properties are compared for two geometries, one with a perfect alignment of the containers and another one including the irregularities present in the experiment. In both geometries the incident flow is orthogonal to the front array of obstacles. The second part of this study presents simulations with different approaching wind directions to analyse the effect of small changes in the incident wind direction on the flow and on the plume dispersion. In this second part, the mean concentration field is compared with the experimental data and an analysis that relates the channelling effects with the plume deflection is provided.
  • Item
    Comparison between large-eddy simulation and Reynolds-averaged Navier–Stokes computations for the MUST field experiment. Part I: Study of the flow for an incident wind directed perpendicularly to the front array of containers
    (Boundary-layer meteorology, 2010) Santiago, J. L.; Dejoan, A.; Martilli, A.; Martin, F.; Pinelli, Alfredo
    The large-eddy simulation (LES) and Reynolds-averaged Navier-Stokes (RANS) methodologies are used to simulate the air flow inside the container's array geometry of the Mock Urban Setting Test (MUST) field experiment. Both tools are assessed and compared in a configuration for which the incident wind direction is perpendicular to the front array. The assessment is carried out against available wind-tunnel data. Effects of including small geometrical irregularities present in the experiments are analysed by considering LES and RANS calculations on two geometries: an idealized one with a perfect alignment and an identical shape of the containers, and a second one including the small irregularities considered in the experiment. These effects are assessed in terms of the local time-mean average and as well in terms of spatial average properties (relevant in atmospheric modelling) given for the velocity and turbulent fields. The structural flow properties obtained using LES and RANS are also compared. The inclusion of geometrical irregularities is found significant on the local time-mean flow properties, in particular the repeated flow patterns encountered in a perfect regular geometry is broken. LES and RANS provide close results for the local mean streamwise velocity profiles and shear-stress profiles, however the LES predictions are closer to the experimental values for the local vertical mean velocity. When considering the spatial average flow properties, the effects of geometrical irregularities are found insignificant and LES and RANS provide similar results.
  • Item
    Comparison between large-eddy simulation and Reynolds-averaged Navier–Stokes computations for the MUST field experiment. Part II: effects of incident wind angle deviation on the mean flow and plume dispersion
    (Boundary-layer meteorology, 2010) Dejoan, A.; Santiago, J. L.; Martilli, A.; Martin, F.; Pinelli, Alfredo
    Large-eddy simulations (LES) and Reynolds-averaged Navier-Stokes (RANS) computations of pollutant dispersion are reported for the Mock Urban Setting Test (MUST) field experiment flow. In particular we address the effects of incident wind angle deviation on the mean velocity and on the mean concentration fields. Both computational fluid dynamical methods are assessed by comparing the simulation results with experimental field data. The comparative analysis proposes to relate the plume deflection with the flow channelling effects. The results show that the plume deflection angle varies with the altitude. As the ground is approached the plume is shown to be almost aligned with the street canyon direction and independent of the incident wind directions considered. At higher altitudes well above the obstacles, the plume direction is aligned with the mean wind direction as in dispersion over flat terrain. The near-ground plume deflection is the consequence of a strong channelling effect in the region near the ground. The mean concentration profiles predicted by LES and RANS are both in good qualitative agreement with experimental data but exhibit discrepancies that can be partly explained by the influence of small incident wind angle deviation effects. Compared to RANS, LES predicts a higher channelling and thus a higher deflection of the plume. Results on the fluctuating intensity of the concentration obtained from LES show a satisfactory agreement with experiments. This information is not available from RANS for which only the mean concentration modelling is considered.
  • Item
    Comparison between LES and RANS computations for the study of contaminant dispersion in the MUST field experiment
    (Seventh Symposium on the Urban Environment, 2007) Dejoan, A.; Santiago, J. L.; Pinelli, Alfredo; Martilli, A.