Person:
Garzón Jiménez, Nuria

Loading...
Profile Picture
First Name
Nuria
Last Name
Garzón Jiménez
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Óptica y Optometría
Department
Optometría y Visión
Area
Optica
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet IDGoogle Scholar ID

Search Results

Now showing 1 - 3 of 3
  • Item
    Comparing surgically induced astigmatism calculated by means of simulated keratometry versus total corneal refractive power
    (European Journal of Ophthalmology, 2018) Garzón Jiménez, Nuria; Rodríguez Vallejo, Manuel; Carmona González, David; Calvo Sanz, Jorge A.; Poyales Galán, Francisco; Palomino Bautista, Carlos; Zato Gómez de Liaño, Miguel Á; Fernández, Joaquín
    Purpose: To evaluate surgically induced astigmatism as computed by means of either simulated keratometry (KSIM) or total corneal refractive power (TCRP) after temporal incisions. Methods: Prospective observational study including 36 right eyes undergoing cataract surgery. Astigmatism was measured preoperatively during the 3-month follow-up period using Pentacam. Surgically induced astigmatism was computed considering anterior corneal surface astigmatism at 3mm with KSIM and considering both corneal surfaces with TCRP from 1 to 8mm (TCRP3 for 3mm). The eyes under study were divided into two balanced groups: LOW with KSIM astigmatism <0.90D and HIGH with KSIM astigmatism ≥0.90D. Resulting surgically induced astigmatism values were compared across groups and measuring techniques by means of flattening, steepening, and torque analysis. Results: Mean surgically induced astigmatism was higher in the HIGH group (0.31D @ 102°) than in the LOW group (0.04 D @ 16°). The temporal incision resulted in a steepening in the HIGH group of 0.15 D @ 90°, as estimated with KSIM, versus 0.28 D @ 90° with TCRP3, but no significant differences were found for the steepening in the LOW group or for the torque in either group. Differences between KSIM- and TCRP3-based surgically induced astigmatism values were negligible in LOW group. Conclusion: Surgically induced astigmatism was considerably higher in the high-astigmatism group and its value was underestimated with the KSIM approach. Eyes having low astigmatism should not be included for computing the surgically induced astigmatism because steepening would be underestimated.
  • Item
    Influence of angle kappa on visual and refractive outcomes after implantation of a diffractive trifocal intraocular lens
    (Journal of cataract and refractive surgery, 2020) Garzón Jiménez, Nuria; García Montero, María; López Artero, Esther; Albarrán Diego, Cesar Antonio; Pérez Cambrodí, Rafael José; Illarramendi Mendicute, Igor; Poyales Galán, Francisco
    Purpose: To evaluate changes in angle kappa following the implantation of a trifocal intraocular lens (IOL), and to assess the postoperative outcomes of patients with different angle kappa values. Setting: IOA Madrid Innova Ocular, Madrid, Spain Design: Prospective trial Methods: Sixty-three patients due to have bilateral implantation of the diffractive trifocal IOL (POD F, PhysIOL, Belgium) were included. Pupil offset was used as the best estimate of angle kappa and was measured using Pentacam (Oculus, Wetzlar, Germany) preoperatively and at 3-months after surgery. Postoperative refractive outcomes (sphere, cylinder, and MRSE) and visual outcomes at far, intermediate and near distance were assessed and compared between eyes with small pupil offset and eyes with large pupil offset. Quality of vision was assessed using a subjective questionnaire. Results: There was significant decrease in pupil offset post-operatively (mean: 0.197 ± 0.12 mm) compared to preoperatively (mean: 0.239 ± 0.12 mm), with a mean decrease of -0.042 mm (P = 0.0002). The same significant decrease was found for both the right eyes and left eyes, when analysed separately. No statistically significant difference was found in any of the refractive and visual acuity outcomes between eyes with small pupil offset and eyes with large pupil offset. The majority of patients (14 out of 16) complaining of significant halos had eyes with small pupil offset. Conclusion: Large pupil offset did not negatively affect visual and refractive outcomes. The tolerance to larger pupil offset might be due to the IOL optical design, with the first diffractive ring being larger than other commonly used multifocal IOLs. More studies comparing various diffractive IOL models will be useful to confirm such hypothesis.
  • Item
    Stability of a Novel Intraocular Lens Design: Comparison of Two Trifocal Lenses
    (Journal of Refractive Surgery, 2016) Poyales Galán, Francisco; Garzón Jiménez, Nuria; Rozema, Jos J.; Romero Royo, Concepción; Ortíz de Zárate, Begoña
    PURPOSE: To compare visual outcomes, rotational stability, and centration in a randomized controlled trial in patients undergoing cataract surgery who were bilaterally implanted with two different trifocal intraocular lenses (IOLs) with a similar optical zone but different haptic shape. METHODS: Twenty-one patients (42 eyes) with cataract and less than 1.50 D of corneal astigmatism underwent implantation of one FineVision/MicoF IOL in one eye and one POD FineVision IOL in the contralateral eye (PhysIOL, Liège, Belgium) at IOA Madrid Innova Ocular, Madrid, Spain. IOL allocation was random. Outcome measures, all evaluated 3 months postoperatively, included monocular and binocular uncorrected distance (UDVA), corrected distance (CDVA), distance-corrected intermediate (DCIVA), and near (DCNVA) visual acuity (at 80, 40, and 25 cm) under photopic conditions, refraction, IOL centration, haptic rotation, dysphotopsia, objective quality of vision and aberration quantification, patient satisfaction, and spectacle independence. RESULTS: Three months postoperatively, mean monocular UDVA, CDVA, DCIVA, and DCNVA (40 cm) under photopic conditions were 0.04 ± 0.07, 0.01 ± 0.04, 0.15 ± 0.11, and 0.16 ± 0.08 logMAR for the eyes implanted with the POD FineVision IOL and 0.03 ± 0.05, 0.01 ± 0.02, 0.17 ± 0.12, and 0.14 ± 0.08 logMAR for those receiving the FineVision/MicroF IOL. Moreover, the POD FineVision IOL showed similar centration (P > .05) and better rotational stability (P < .05) than the FineVision/MicroF IOL. Regarding halos, there was a minimal but statistically significant difference, obtaining better results with FineVision/MicroF. Full spectacle independence was reported by all patients. CONCLUSIONS: This study revealed similar visual outcomes for both trifocal IOLs under test (POD FineVision and FineVision/MicroF). However, the POD FineVision IOL showed better rotational stability, as afforded by its design.