Person:
Esteban San Román, Segundo

Loading...
Profile Picture
First Name
Segundo
Last Name
Esteban San Román
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Informática
Department
Arquitectura de Computadores y Automática
Area
Arquitectura y Tecnología de Computadores
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet IDGoogle Scholar ID

Search Results

Now showing 1 - 7 of 7
  • Item
    Framework to emulate spacecraft orbital positioning using GNSS hardware in the loop
    (Sensors, 2023) Forero, David; Esteban San Román, Segundo; Rodríguez Polo, Óscar
    The paper presents a framework to emulate spacecraft orbits using GNSS hardware in the loop that enables the evaluation of new orbital positioning algorithms. The framework software generates the spacecraft orbit and the GNSS signals, including the most common perturbations. These signals are modulated and transmitted by a software-defined radio and received by a commercial GPS receiver. The system is validated using a test orbit, where the GPS receiver accurately determines the spacecraft positions. Moreover, using raw data provided by the receiver, the spacecraft positions have also been determined by software for a low earth orbit, in which civil GPS receivers do not work.
  • Item
    MEGARA, the R=6000-20000 IFU and MOS of GTC
    (Ground-based and airborne instrumentation for astronomy, 2018) Gil de Paz, Armando; Gallego Maestro, Jesús; Bouquin, A.; Carbajo, J.; Cardiel López, Nicolás; Castillo Morales, África; Esteban San Román, Segundo; López Orozco, José Antonio; Pascual, S.; Picazo, P.; Sánchez Penim, Ainhoa; Velázquez, M.; Zamorano Calvo, Jaime; Catalán Torrecilla, Cristina; Dullo, Bililign; Pérez González, P.G.; Roca Fábrega, Santi
    MEGARA is the new generation IFU and MOS optical spectrograph built for the 10.4m Gran Telescopio CANARIAS (GTC). The project was developed by a consortium led by UCM (Spain) that also includes INAOE (Mexico), IAA-CSIC (Spain) and UPM (Spain). The instrument arrived to GTC on March 28th 2017 and was successfully integrated and commissioned at the telescope from May to August 2017. During the on-sky commissioning we demonstrated that MEGARA is a powerful and robust instrument that provides on-sky intermediate-to-high spectral resolutions R_(FWHM) ~ 6,000, 12,000 and 20,000 at an unprecedented efficiency for these resolving powers in both its IFU and MOS modes. The IFU covers 12.5 x 11.3 arcsec2 while the MOS mode allows observing up to 92 objects in a region of 3.5 x 3.5 arcmin^(2) . In this paper we describe the instrument main subsystems, including the Folded-Cassegrain unit, the fiber link, the spectrograph, the cryostat, the detector and the control subsystems, and its performance numbers obtained during commissioning where the fulfillment of the instrument requirements is demonstrated.
  • Item
    MEGARA, the new intermediate-resolution optical IFU and MOS for GTC: getting ready for the telescope
    (Proceedings of SPIE, 2016) Gil de Paz, Armando; Gallego Maestro, Jesús; Cardiel López, Nicolás; Castillo Morales, África; Cruz García, Jesús Manuel de la; Esteban San Román, Segundo; López Orozco, José Antonio; Pascual, S.; Picazo, P.; Sánchez-Penim, A.; Zamorano Calvo, Jaime; Pérez González, Pablo Guillermo; otros, ...
    MEGARA (Multi-Espectrografo en GTC de Alta Resolucion para Astronomia) is an optical Integral-Field Unit (IFU) and Multi-Object Spectrograph (MOS) designed for the GTC 10.4m telescope in La Palma that is being built by a Consortium led by UCM (Spain) that also includes INAOE (Mexico), IAA-CSIC (Spain), and UPM (Spain). The instrument is currently finishing AIV and will be sent to GTC on November 2016 for its on-sky commissioning on April 2017. The MEGARA IFU fiber bundle (LCB) covers 12.5x11.3 arcsec(2) with a spaxel size of 0.62 arcsec while the MEGARA MOS mode allows observing up to 92 objects in a region of 3.5x3.5 arcmin(2) around the IFU. The IFU and MOS modes of MEGARA will provide identical intermediate-to-high spectral resolutions (R-FWHM similar to 6,000, 12,000 and 18,700, respectively for the low-, mid-and high-resolution Volume Phase Holographic gratings) in the range 3700-9800 angstrom angstrom. An x-y mechanism placed at the pseudo-slit position allows (1) exchanging between the two observing modes and (2) focusing the spectrograph for each VPH setup. The spectrograph is a collimator-camera system that has a total of 11 VPHs simultaneously available (out of the 18 VPHs designed and being built) that are placed in the pupil by means of a wheel and an insertion mechanism. The custom-made cryostat hosts a 4kx4k 15-mu m CCD. The unique characteristics of MEGARA in terms of throughput and versatility and the unsurpassed collecting are of GTC make of this instrument the most efficient tool to date to analyze astrophysical objects at intermediate spectral resolutions. In these proceedings we present a summary of the instrument characteristics and the results from the AIV phase. All subsystems have been successfully integrated and the system-level AIV phase is progressing as expected.
  • Item
    Signal conditioning for the Kalman filter: application to satellite attitude estimation with magnetometer and sun sensors
    (Sensors, 2016) Esteban San Román, Segundo; Girón Sierra, José María; Angulo, Manuel
    Most satellites use an on-board attitude estimation system, based on available sensors. In the case of low-cost satellites, which are of increasing interest, it is usual to use magnetometers and Sun sensors. A Kalman filter is commonly recommended for the estimation, to simultaneously exploit the information from sensors and from a mathematical model of the satellite motion. It would be also convenient to adhere to a quaternion representation. This article focuses on some problems linked to this context. The state of the system should be represented in observable form. Singularities due to alignment of measured vectors cause estimation problems. Accommodation of the Kalman filter originates convergence difficulties. The article includes a new proposal that solves these problems, not needing changes in the Kalman filter algorithm. In addition, the article includes assessment of different errors, initialization values for the Kalman filter; and considers the influence of the magnetic dipole moment perturbation, showing how to handle it as part of the Kalman filter framework.
  • Item
    Project number: 313
    UCM-Robotarium. Desarrollo y construcción de una plataforma de experimentación robótica multiagente para la realización de prácticas presenciales y remotas
    (2023) Chacón Sombría, Jesús; Besada Portas, Eva; Esteban San Román, Segundo; Fernández Fernández, Raúl; García Pérez, Lía; Jiménez Castellanos, Juan Francisco; López Orozco, José Antonio; Márquez Vidal, Félix; Sánchez Foces, David; Carazo Barbero, Gonzalo; Docampo Granados, Leticia; Gutiérrez Fontán Alejandro; Real López, Leonor; Goncalves López de Medrano, Daniela Alejandra
  • Item
    First scientific observations with MEGARA at GTC
    (Ground-based and airbone instrumentation for astronomy, 2018) Gil de Paz, Armando; Gallego Maestro, Jesús; Bouquin, A.; Carbajo, J.; Cardiel López, Nicolás; Castillo Morales, África; Esteban San Román, Segundo; López Orozco, José Antonioi; Pascual Ramírez, Sergio; Picazo, P.; Sánchez Penim, Ainhoa; Zamorano Calvo, Jaime; Catalán Torrecilla, Cristina; Dullo, Bililign; Pérez González, P.G.
    On June 25th 2017, the new intermediate-resolution optical IFU and MOS of the 10.4-m GTC had its first light. As part of the tests carried out to verify the performance of the instrument in its two modes (IFU & MOS) and 18 spectral setups (identical number of VPHs with resolutions R=6000-20000 from 0.36 to 1 micron) a number of astronomical objects were observed. These observations show that MEGARA@GTC is called to fill a niche of high-throughput, intermediate resolution IFU & MOS observations of extremely-faint narrow-lined objects. Lyman-α absorbers, star-forming dwarfs or even weak absorptions in stellar spectra in our Galaxy or in the Local Group can now be explored to a new level. Thus, the versatility of MEGARA in terms of observing modes and spectral resolution and coverage will allow GTC to go beyond current observational limits in either depth or precision for all these objects. The results to be presented in this talk clearly demonstrate the potential of MEGARA in this regard.
  • Item
    Project number: 139
    Herramienta integral y de bajo coste para el desarrollo de prácticas remotas para las asignaturas de Ciencias e Ingeniería
    (2021) Besada Portas, Eva; Chacón Sombria, Jesús; López Orozco, José Antonio; Jiménez Castellanos, Juan Francisco; Esteban San Román, Segundo; Fernández Sánchez, Paloma; Sotillo Buzarra, Belén; Urbieta Quiroga, Ana Irene; Sánchez Foces, David; Marquez Vidal, Felix; Ariza García, Rocío; Gómez García, Andrea; Rodríguez Peña, Micaela; Goncalves López de Medrano, Daniela Alejandra; Pintado Barrera, Amalia
    Los laboratorios remotos, en los que los alumnos interactúan con los dispositivos reales a través de Internet, incrementa el tiempo de uso de dichos dispositivos por parte de los alumnos y el número de pruebas que pueden realizar durante las experiencias. Sin embargo, para implementarlos, los docentes habitualmente tienen que saber utilizar una serie de tecnologías diferentes, que dificultan su puesta en marcha y mantenimiento. Para paliar estos problemas, en este Proyecto de Innovación y Mejora de la Calidad Docente (PIMCD) se ha desarrollado una nueva metodología desde la que se centraliza la puesta en marcha de todo el laboratorio desde una única herramienta (Easy JavaScript Simulations, EJsS), que sirve tanto para gestionar el código mediante el que se interactúa con los dispositivos, el servidor que da acceso remoto a la práctica, y la interfaz gráfica con la que los alumnos interactúan con los dispositivos. Además, es importante resaltar que es una metodología de bajo coste, ya que desde el punto de vista del proceso de conversión de un laboratorio presencial ya existente en uno remoto, solo necesita una Raspberry PI para desplegar todo el software del laboratorio. Además, en este proyecto también se presentan un conjunto de experiencias desarrolladas con las mismas, que ya están siendo utilizadas por los alumnos en diferentes asignaturas de Ingeniería Electrónica de Comunicaciones y un nuevo laboratorio remoto de Robótica que se pondrá en marcha el curso que viene.