Person:
Polo Sánchez, Irene

Loading...
Profile Picture
First Name
Irene
Last Name
Polo Sánchez
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Físicas
Department
Física de la Tierra y Astrofísica
Area
Física de la Tierra
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet ID

Search Results

Now showing 1 - 4 of 4
  • Item
    Skillful prediction of tropical Pacific fisheries provided by Atlantic Niños
    (Environmental research letters, 2021) Gómara Cardalliaguet, Íñigo; Rodríguez Fonseca, María Belén; Mohino Harris, Elsa; Losada Doval, Teresa; Polo Sánchez, Irene; Coll, Marta
    Tropical Pacific upwelling-dependent ecosystems are the most productive and variable worldwide, mainly due to the influence of El Niño Southern Oscillation (ENSO). ENSO can be forecasted seasons ahead thanks to assorted climate precursors (local-Pacific processes, pantropical interactions). However, due to observational data scarcity, little is known about the importance of these precursors for marine ecosystem prediction. Previous studies based on Earth System Model simulations forced by observed climate have shown that multiyear predictability of tropical Pacific marine primary productivity is possible. With recently released global marine ecosystem simulations forced by historical climate, full examination of tropical Pacific ecosystem predictability is now feasible. By complementing historical fishing records with marine ecosystem model data, we show herein that equatorial Atlantic sea surface temperatures (SSTs) constitute a valuable predictability source for tropical Pacific fisheries, which can be forecasted over large-scale areas up to three years in advance. A detailed physical-biological mechanism is proposed whereby equatorial Atlantic SSTs influence upwelling of nutrient-rich waters in the tropical Pacific, leading to a bottom-up propagation of the climate-related signal across the marine food web. Our results represent historical and near-future climate conditions and provide a useful springboard for implementing a marine ecosystem prediction system in the tropical Pacific.
  • Item
    Can the boundary profiles at 26ºN be used to extract buoyancy-forced Atlantic Meridional Overturning Circulation signals?
    (Ocean science, 2020) Polo Sánchez, Irene; Haines, Keith; Robson, Jon; Thomas, Christopher
    The temporal variability of the Atlantic Meridional Overturning Circulation (AMOC) is driven both by direct wind stresses and by the buoyancy-driven formation of North Atlantic Deep Water over the Labrador Sea and Nordic Seas. In many models, low-frequency density variability down the western boundary of the Atlantic basin is linked to changes in the buoyancy forcing over the Atlantic subpolar gyre (SPG) region, and this is found to explain part of the geostrophic AMOC variability at 26◦ N. In this study, using different experiments with an ocean general circulation model (OGCM), we develop statistical methods to identify characteristic vertical density profiles at 26◦ N at the western and eastern boundaries, which relate to the buoyancy-forced AMOC. We show that density anomalies due to anomalous buoyancy forcing over the SPG propagate equatorward along the western Atlantic boundary (through 26◦ N), eastward along the Equator, and then poleward up the eastern Atlantic boundary. The timing of the density anomalies appearing at the western and eastern boundaries at 26◦ N reveals ∼ 2– 3-year lags between boundaries along deeper levels (2600– 3000 m). Record lengths of more than 26 years are required at the western boundary (WB) to allow the buoyancy-forced signals to appear as the dominant empirical orthogonal function (EOF) mode. Results suggest that the depth structure of the signals and the lagged covariances between the boundaries at 26◦ N may both provide useful information for detecting propagating signals of high-latitude origin in more complex models and potentially in the observational RAPID (Rapid Climate Change programme) array. However, time filtering may be needed, together with the continuation of the RAPID programme, in order to extend the time period.
  • Item
    ENSO coupling to the equatorial Atlantic: analysis with an extended improved recharge oscillator model
    (Frontiers in Marine Science, 2023) Crespo Miguel, Rodrigo; Polo Sánchez, Irene; Mechoso, Carlos R.; Rodríguez Fonseca, María Belén; Cao García, Francisco Javier
    Introduction: Observational and modeling studies have examined the interactions between El Niño-Southern Oscillation (ENSO) and the equatorial Atlantic variability as incorporated into the classical charge-recharge oscillator model of ENSO. These studies included the role of the Atlantic in the predictability of ENSO but assumed stationarity in the relationships, i.e., that models’ coefficients do not change overtime. Arecentworkbytheauthors has challenged the stationarity assumption in the ENSO framework but without considering the equatorial Atlantic influence on ENSO. Methods: The present paper addresses the changing relationship between ENSO and the Atlantic El Niño using an extended version of the recharge oscillator model. The classical two-variable model of ENSO is extended by adding a linear coupling on the SST anomalies in the equatorial Atlantic. The model’s coefficients are computed for different periods. This calculation is done using two methods tofitthemodel tothe data: (1) the traditional method (ReOsc), and (2) a novel method (ReOsc+) based on fitting the Fisher’s Z transform of the auto and cross-correlation functions. Results: Weshowthat, duringthe 20th century, the characteristic dampingrate of the SST and thermocline depth anomalies in the Pacific have decreased in time by a factor of 2 and 3, respectively. Moreover, the damping time of the ENSO fluctuations has doubled from 10 to 20 months, and the oscillation period of ENSO has decreased from 60-70 months before the 1960s to 50 months afterward. These two changes have contributed to enhancing ENSO amplitude. The results also show that correlations between ENSO and the Atlantic SST strengthened after the 70s and the way in which the impact of the equatorial Atlantic is added to the internal ENSO variability. Conclusions: The remote effects of the equatorial Atlantic on ENSO must be considered in studies of ENSO dynamics and predictability during specific time-periods. Our results provide further insight into the evolution of the ENSO dynamics anditscoupling to the equatorial Atlantic, as well as an improved tool to study the coupling of climatic and ecological variables.
  • Item
    Impact of equatorial Atlantic variability on ENSO predictive skill
    (Nature communications, 2021) Exarchou, Eleftheria; Ortega, Pablo; Rodríguez Fonseca, María Belén; Losada Doval, Teresa; Polo Sánchez, Irene; Prodhomme, Cloé
    El Niño-Southern Oscillation (ENSO) is a key mode of climate variability with worldwide climate impacts. Recent studies have highlighted the impact of other tropical oceans on its variability. In particular, observations have demonstrated that summer Atlantic Niños (Niñas) favor the development of Pacific Niñas (Niños) the following winter, but it is unclear how well climate models capture this teleconnection and its role in defining the seasonal predictive skill of ENSO. Here we use an ensemble of seasonal forecast systems to demonstrate that a better representation of equatorial Atlantic variability in summer and its lagged teleconnection mechanism with the Pacific relates to enhanced predictive capacity of autumn/winter ENSO. An additional sensitivity study further shows that correcting SST variability in equatorial Atlantic improves different aspects of forecast skill in the Tropical Pacific, boosting ENSO skill. This study thus emphasizes that new efforts to improve the representation of equatorial Atlantic variability, a region with long standing systematic model biases, can foster predictive skill in the region, the Tropical Pacific and beyond, through the global impacts of ENSO.