Person:
Pedrero Muñoz, María

Loading...
Profile Picture
First Name
María
Last Name
Pedrero Muñoz
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Químicas
Department
Química Analítica
Area
Química Analítica
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet IDGoogle Scholar ID

Search Results

Now showing 1 - 9 of 9
  • Item
    Electrochemical sensor for rapid determination of fibroblast growth factor receptor 4 in raw cancer cell lysates
    (PLOS ONE, 2017) Khodarahmi, Reza; Torrente Rodríguez, Rebeca M.; Ruiz-Valdepeñas Montiel, Víctor; Campuzano, Susana; Pedrero Muñoz, María; Farchado, Meryem; Vargas, Eva; Manuel de Villena, F. Javier; Garranzo Asensio, María; Barderas, Rodrigo; Pingarrón Carrazón, José Manuel
    The first electrochemical immunosensor for the determination of fibroblast growth factor receptor 4 (FGFR4) biomarker is reported in this work. The biosensor involves a sandwich configuration with covalent immobilization of a specific capture antibody onto activated carboxylic-modified magnetic microcarriers (HOOC-MBs) and amperometric detection at disposable carbon screen-printed electrodes (SPCEs). The biosensor exhibits a great analytical performance regarding selectivity for the target protein and a low LOD of 48.2 pg mL-1. The electrochemical platform was successfully applied for the determination of FGFR4 in different cancer cell lysates without any apparent matrix effect after a simple sample dilution and using only 2.5 μg of the raw lysate. Comparison of the results with those provided by a commercial ELISA kit shows competitive advantages by using the developed immunosensor in terms of simplicity, analysis time, and portability and cost-affordability of the required instrumentation for the accurate determination of FGFR4 in cell lysates.
  • Item
    Non-Invasive Breast Cancer Diagnosis through Electrochemical Biosensing at Different Molecular Levels
    (Sensors, 2017) Campuzano, Susana; Pedrero Muñoz, María; Pingarrón Carrazón, José Manuel
    The rapid and accurate determination of specific circulating biomarkers at different molecular levels with non- or minimally invasive methods constitutes a major challenge to improve the breast cancer outcomes and life quality of patients. In this field, electrochemical biosensors have demonstrated to be promising alternatives against more complex conventional strategies to perform fast, accurate and on-site determination of circulating biomarkers at low concentrations in minimally treated body fluids. In this article, after discussing briefly the relevance and current challenges associated with the determination of breast cancer circulating biomarkers, an updated overview of the electrochemical affinity biosensing strategies emerged in the last 5 years for this purpose is provided highlighting the great potentiality of these methodologies. After critically discussing the most interesting features of the electrochemical strategies reported so far for the single or multiplexed determination of such biomarkers with demonstrated applicability in liquid biopsy analysis, existing challenges still to be addressed and future directions in this field will be pointed out.
  • Item
    Electrochemical immunoplatform to help managing pancreatic cancer
    (Journal of Electroanalytical Chemistry, 2023) Pérez Ginés, Víctor; Torrente Rodríguez, Rebeca Magnolia; Pedrero Muñoz, María; Martínez-Bosch, Neus; García de Frutos, Pablo; Navarro, Pilar; Pingarrón Carrazón, José Manuel; Campuzano Ruiz, Susana
    Pancreatic ductal adenocarcinoma (PDAC) is the solid tumor with the worst prognosis, representing today the third cause of cancer-related deaths in developed countries and expected to be the second in 2030. Today, CA19-9 remains the only clinically used marker for management of PDAC (FDA-approved as a disease moni- toring marker). This work reports a disposable amperometric immunoplatform for the determination of CA19-9. The immunoplatform skilfully combines the advantages of magnetic microsupports (MBs) for implementation of the immunoassay and amperometric transduction on screen-printed carbon electrodes (SPCEs). The method involves the preparation of sándwich immunocomplexes enzymatically labeled with the enzyme horseradish peroxidase (HRP) on the MBs and uses a detection antibody conjugated to HRP. Once the HRP- labeled sandwich immunocomplexes-bearing MBs were trapped on the SPCE surface, the variation of the catho- dic current was measured in the presence of H2O2 and hydroquinone (HQ), which was directly proportional to the concentration of CA19-9. Under the optimized experimental conditions, the immunoplatform allowed the amperometric determination of CA19-9 standards over the 5.0 to 500 U mL−1 concentration range, with a limit of detection (LOD) value of 1.5 U mL−1 in 1 h. The method exhibits good reproducibility and selectivity and the magnetic immunoconjugates shows a good storage stability. The immunoplatform was applied to the deter- mination of CA19-9 in serum samples of a medium-sized cohort (22 individuals) of healthy subjects and patients diagnosed with PDAC. The obtained results demonstrated the immunoplatform ability to discriminateboth types of individuals within 1 h after sample dilution. The developed immunoplatform represents an improvement in terms of cost, applicability and accessibility compared to the ELISA-based techniques currently used in the clinic.
  • Item
    Quantum dots as components of electrochemical sensing platforms for the detection of environmental and food pollutants: a review
    (Journal of AOAC International, 2017) Pedrero Muñoz, María; Campuzano Ruiz, Susana; Pingarrón Carrazón, José Manuel
    The determination of organic and inorganic environmental and food pollutants is a key matter of concern in Analytical Chemistry due to their effects as a serious threat to human health. Focused on this issue, several methodologies involving the use of nanostructured electrochemical platforms have been recently reported in literature. Among these methods, those implying the use of quantum dots (QDs) stand out because of features such as signal amplification, good reproducibility and selectivity and the possibility for multiplexed detection also keeping the outstanding characteristics of electrochemical methodologies with respect to simplicity, easy-to-use and cost effective instrumentation. This review describes recent electrochemical strategies, in which design QDs play a key role, for the determination of pollutants in food and environmental samples. The particular role of QDs in the reported methodologies, their preparation and the electrochemical platform design, as well as the advantages that QDs provide in the analysis of target analytes are critically discussed.
  • Item
    Amperometric magnetoimmunoassay for the determination of lipoprotein(a)
    (Microchimica Acta, 2015) Kaçar, Ceren; Torrente Rodríguez, Rebeca Magnolia; Pedrero Muñoz, María; Campuzano Ruiz, Susana; Kilic, Esma; Pingarrón Carrazón, José Manuel
    A highly sensitive amperometric magnetoimmunoassay for rapid determination of lipoprotein(a) (Lp(a)), an important predictor of cardiovascular disease risk, in human serum, is described. It uses a sandwich configuration involving selective capture antibody [antiLp(a)] and biotinylated detector antibody [biotinantiLp(a)], and a streptavidin-HRP conjugate on carboxymodified magnetic beads (HOOC-MBs). The resulting MBs bearing the sandwiched immunoconjugates were captured by a magnet placed under the working electrode surface of a disposable screen-printed carbon electrode and the extent of the affinity reaction was monitored amperometrically at −0.20 V (vs a silver pseudo-reference electrode) in the presence of hydroquinone as an electron transfer mediator and upon addition of H2O2 as the enzyme substrate. The method exhibited a wide linear response range (from 0.01 to 0.5 μgmL−1), a detection limit of 4 ng mL−1, and an excellent selectivity over other serum components. The utility of the immunoassay was demonstrated by analyzing a reference serum containing a certified quantity of Lp(a). The performance of this magnetoimmunoassay compares favorably to that of an integrated amperometric immunoassay described earlier.
  • Item
    Comparison of Different Strategies for the Development of Highly Sensitive Electrochemical Nucleic Acid Biosensors Using Neither Nanomaterials nor Nucleic Acid Amplification
    (ACS Sensors, 2017) Ruiz Valdepeñas Montiel, Víctor; Povedano Muñumel, Eloy; Vargas, Eva; Torrente Rodríguez, Rebeca Magnolia; Pedrero Muñoz, María; Reviejo García, Ángel Julio; Campuzano Ruiz, Susana; Pingarrón Carrazón, José Manuel
    Currently, electrochemical nucleic acid-based biosensing methodologies involving hybridization assays, specific recognition of RNA/DNA and RNA/RNAduplexes, and amplification systems provide an attractive alternative to conventional quantification strategies for the routine determination of relevant nucleic acids at different settings. A particularly relevant objective in the development of such nucleic acid biosensors is the design of as many as possible affordable, quick, and simple methods while keeping the required sensitivity. With this aim in mind, this work reports, for the first time, a thorough comparison between 11 methodologies that involve different assay formats and labeling strategies for targeting the same DNA. The assayed approaches use conventional sandwich and competitive hybridization assays, direct hybridization coupled to bioreceptors with affinity for RNA/DNA duplexes, multienzyme labeling bioreagents, and DNA concatamers. All of them have been implemented on the surface of magnetic beads (MBs) and involve amperometrictransduction at screen-printed carbon electrodes (SPCEs). The influence of the formed duplex length and of the labeling strategy have also been evaluated. Results demonstrate that these strategies can provide very sensitive methods without the need for using nanomaterials or polymerase chain reaction (PCR). In addition, the sensitivity can be tailored within several orders of magnitude simply by varying the bioassay format, hybrid length or labeling strategy. This comparative study allowed us to conclude that the use of strategies involving longer hybrids, the use of antibodies with specificity for RNA/DNA heteroduplexes and labeling with bacterial antibody binding proteins conjugated with multiple enzyme molecules, provides the best sensitivity.
  • Item
    Angiogenesis inhibitor or aggressiveness marker? The function of endostatin in cancer through electrochemical biosensing
    (Bioelectrochemistry, 2024) Tejerina Miranda, Sandra; Pedrero Muñoz, María; Blázquez García, Marina; Serafín González-Carrato, Verónica; Montero Calle, Ana; Garranzo Asensio, María; Reviejo García, Ángel Julio; Pingarrón Carrazón, José Manuel; Barderas Manchado, Rodrigo; Campuzano Ruiz, Susana
    This work reports the first electrochemical bioplatform developed for the determination of human endostatin (HE), a biomarker with recognized antiangiogenic potential whose elevated circulating levels have also been associated with the development of aggressive cancers. The developed electroanalytical biotool combines the benefits of using magnetic microparticles for the implementation of sandwich immunoassays and amperometric transduction on disposable carbon electrodes. A limit of detection (LOD) of 34.1 pg mL−1 for HE standards and a selectivity suitable for its foray into the clinical oncology area, are demonstrated. The determination of HE in clinical samples such as lysates and secretomes of colorectal cancer (CRC) cells, plasma, and tissue samples from patients with CRC in different stages, has been faced with satisfactory results showing the ability for discriminating the metastatic capabilities of cells and for identifying and staging CRC patients. The developed bioplatform allows precise quantitative determinations, requiring minimal pre-treatments and sample amounts in only 75 min. In addition, due to the instrumentation and the type of substrates used in the detection step, the biotool is compatible with implementation in multiplexed and/or point-of-need devices, features in which this bioplatform is advantageous with respect to the enzyme linked immunosorbent assay (ELISA) or immunoblotting technologies.
  • Item
    Rapid endoglin determination in serum samples using an amperometric magneto-actuated disposable immunosensing platform
    (Journal of Pharmaceutical and Biomedical Analysis, 2016) Torrente Rodríguez, Rebeca Magnolia; Campuzano Ruiz, Susana; Ruiz Valdepeñas Montiel, Víctor; Pedrero Muñoz, María; Fernández Aceñero, María Jesús; Barderas Manchado, Rodrigo; Pingarrón Carrazón, José Manuel
    A sensitive and rapid method for the determination of the clinically relevant biomarker human endoglin (CD105) in serum samples is presented, involving a magneto-actuated immunoassay and amperometric detection at disposable screen-printed carbon electrodes (SPCEs). Micro-sized magnetic particles were modified with a specific antibody to selectively capture the target protein which was further sandwiched with a secondary HRP-labeled antibody. The immunocomplexes attached to the magnetic carriers were amperometrically detected at SPCEs using the hydroquinone (HQ)/H2O2/HRP system. The magneto-actuated immunosensing platform was able to detect 5 pmoles of endoglin (in 25μL of sample, 0.2μM) in 30min providing statistically similar results to those obtained using a commercial ELISA kit for the determination of endogenous content of endoglin in human serum samples.
  • Item
    Magnetic microbeads-based amperometric immunoplatform for the rapid and sensitive detection of N6-methyladenosine to assist in metastatic cancer cells discrimination
    (Biosensors and Bioelectronics, 2021) Povedano Muñumel, Eloy; Gamella Carballo, María; Torrente Rodríguez, Rebeca Magnolia; Montero-Calle, Ana; Pedrero Muñoz, María; Solís-Fernández, Guillermo; Navarro Villoslada, Fernando; Barderas, Rodrigo; Campuzano Ruiz, Susana; Pingarrón Carrazón, José Manuel
    This work describes the preparation of an immunoplatform for the sensitive and selective determination of N6-methyladenosine (m6A). The simple and fast protocol involves for the first time the use of micromagnetic immunoconjugates to establish a direct competitive assay between the m6A target and a biotinylated RNA oligomer bearing a single m6A enzymatically labelled with a commercial conjugate of streptavidin-peroxidase (Strep-HRP) as tracer. The cathodic current change measured in the presence of H2O2/hydroquinone (HQ) at screen-printed carbon electrodes (SPCEs) upon surface capturing the magnetic bioconjugates is inversely proportional to the m6A target concentration. After evaluating the effect of key variables, the analytical characteristics were established for the determination of three different targets: the N6-methyladenosine-5′ -triphosphate (m6ATP) ribonucleotide, a short synthetic RNA oligomer bearing a single m6A and the positive control provided in a commercial colorimetric kit for m6A-RNA quantification. The obtained results show that this immunoplatform is competitive with other methods reported to date, achieving an improved sensitivity (limit of detection of 0.9 pM for the short synthetic oligomer) using a much simpler and faster protocol (~1 h) and disposable electrodes for the transduction. Furthermore, the applicability for discriminating the metastatic potential of cancer cells by directly analyzing a small amount of raw total RNA without enriching or fragmenting was also preliminary assessed.