Person:
González Calbet, José María

Loading...
Profile Picture
First Name
José María
Last Name
González Calbet
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Químicas
Department
Química Inorgánica
Area
Química Inorgánica
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet IDGoogle Scholar ID

Search Results

Now showing 1 - 3 of 3
  • Item
    Multicationic Sr4Mn3O10 mesostructures: molten salt synthesis, analytical electron microscopy study and reactivity
    (2018) González-Jiménez, Irma N.; Torres Pardo, María De La Almudena; Rano, Simon; Laberty-Robert, Christel; Hernández-Garrido, Juan carlos; López-Haro, Miguel; Calvino, José J.; Varela Losada, María Áurea; Sanchez, Clément; Parras Vázquez, Marina Marta; González Calbet, José María; Portehault, David
    Inorganic molten salts are known as fluxes for the synthesis of novel bulk inorganic compounds and of mesostructures and nanostructures with crystal habits different from those observed in more conventional solvents. However, they have not demonstrated the ability to provide mesostructures and nanostructures of complex metal oxides that are currently unreported at the mesoscale and nanoscale. In this report, we show the first occurrence of Sr4Mn3O10 at the mesoscale, as platelets synthesized in molten strontium hydroxide at 600 °C with basal faces of few hundreds of nanometers and thicknesses ranging from 20 to 100 nm. We address carefully the atom-scale structure by transmission electron microscopy, including electron energy loss spectroscopy and electron tomography. We then propose that the final morphology is driven by the surface charge of each facet through surface energy. The reactivity of these platelets is then addressed, highlighting cation leaching when in contact with acidic water, which results in crystalline–amorphous core–shell platelets that are active electrocatalysts towards the oxygen reduction reaction.
  • Item
    Quantitative, Spectro-kinetic Analysis of Oxygen in Electron-Beam Sensitive, Multimetallic Oxide Nanostructures
    (Microscopy and Microanalysis, 2023) López-Haro, Miguel; Gómez Recio, Isabel; Pan, Huiyan; Delgado, Juan ; Chen, Xiaowei; Cauqui, Miguel ; Pérez-Omil, José ; Ruiz González, María Luisa; Hernando González, María; Parras Vázquez, Marina Marta; González Calbet, José María; Calvino, José
    The oxygen stoichiometry of hollandite, KxMnO2-δ, nanorods has been accurately determined from a quantitative analysis of scanning-transmission electron microscopy (STEM) X-Ray Energy Dispersive Spectroscopy (XEDS) experiments carried out in chrono-spectroscopy mode. A methodology combining 3D reconstructions of high-angle annular dark field electron tomography experiments, using compressed-sensing algorithms, and quantification through the so-called ζ-factors method of XEDS spectra recorded on a high-sensitivity detector has been devised to determine the time evolution of the oxygen content of nanostructures of electron-beam sensitive oxides. Kinetic modeling of O-stoichiometry data provided K0.13MnO1.98 as overall composition for nanorods of the hollandite. The quantitative agreement, within a 1% mol error, observed with results obtained by macroscopic techniques (temperature-programmed reduction and neutron diffraction) validate the proposed methodology for the quantitative analysis, at the nanoscale, of light elements, as it is the case of oxygen, in the presence of heavy ones (K, Mn) in the highly compromised case of nanostructured materials which are prone to electron-beam reduction. Moreover, quantitative comparison of oxygen evolution data measured at macroscopic and nanoscopic levels allowed us to rationalize beam damage effects in structural terms and clarify the exact nature of the different steps involved in the reduction of these oxides with hydrogen.
  • Item
    The controlled transition-metal doping of SnO_2 nanoparticles with tunable luminescence
    (CrystEngComm, 2014) Peche Herrero, M. A.; Maestre Varea, David; Ramírez Castellanos, J.; Cremades Rodríguez, Ana Isabel; Piqueras De Noriega, Francisco Javier; González Calbet, José María
    SnO_2 nanoparticles doped with transition metals (V, Cr, Mn) have been synthesized by both the hydrothermal method (HDT) in a basic media and the liquid mixed method (LQM) based on the Pechini method. Nanocrystalline particles obtained via a liquid mixed technique show a well-defined chemical composition and an average size of 6 nm, with a high degree of both crystallinity and chemical homogeneity. Nanoparticles prepared via a hydrothermal method exhibit a high dispersion in size as well as agglomeration effects. As the LQM demonstrates advantages with respect to the HDT, a more detailed investigation has been carried out on the SnO_2 nanoparticles doped with V, Cr and Mn grown by this method. The microstructure of the materials was elucidated by means of X-ray Diffraction (XRD), Selected-Area Electron Diffraction (SAED), and High-Resolution Transmission Electron Microscopy (HRTEM). Luminescence from undoped and doped SnO_2 nanoparticles was characterized by cathodoluminescence (CL). The luminescence studies demonstrate a strong dependence of CL signals with transition metal doping, thus inducing red, green or orange emissions when doping with Cr, V or Mn respectively.