Person:
González Martínez, María Encina

Loading...
Profile Picture
First Name
María Encina
Last Name
González Martínez
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Veterinaria
Department
Anatomía y Embriología
Area
Anatomía y Anatomía Patológica Comparadas
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet ID

Search Results

Now showing 1 - 2 of 2
  • Item
    Nobiletin as a novel agent to enhance porcine in vitro embryo development and quality
    (Theriogenology, 2024) Cajas Suárez, Yulia Nathaly; Cañón Beltrán, Karina Esperanza; Mazzarella, Rosane; Núñez Puente, Carolina; González Martínez, María Encina; Rodríguez Martínez, Heriberto; Rizos, Dimitri; Martínez Serrano, Cristina A.
    In vitro embryo production (IVP) is of great importance to the porcine industry, as well as for basic research and biomedical applications. Despite the large efforts made in laboratories worldwide to address suboptimal culture conditions, porcine IVP remains inefficient. Nobiletin (Nob, 5,6,7,8,3′,4′ hexamethoxyflavone) supplementation to in vitro culture (IVC) medium, enhances in vitro embryo development in various species. However, its impact on the quality and developmental capacity of in vitro-produced pig embryos is yet to be established. This study evaluated the effects of different concentrations (2.5 and 5 μM) of Nob during the early culture of in vitro-produced pig embryos on embryo developmental competence, mitochondrial activity, lipid content, intracellular Reactive Oxygen Species (ROS) and Glutathione (GSH) content, Total Cell Number (TCN) per blastocyst, and expression of genes related to embryo development, quality and oxidative stress. Embryos cultured in medium without Nob supplementation and in medium supplemented with 0.01 % dimethyl sulfoxide (DMSO-vehicle for Nob) constituted the Control and DMSO groups, respectively. Embryo development rates were evaluated on Days 2, 6 and 7 of IVC. Additionally, a representative group of embryos was selected to assess mitochondrial activity, lipid, ROS and GSH content (on Days 2 and 6 of IVC), TCN assessment and gene expression analyses (on Day 6 of IVC). No significant differences were observed in any of the parameters evaluated on Day 2 of IVC. In contrast, embryos cultured under the presence of Nob 2.5 showed higher developmental rates on Days 6 and 7 of IVC. In addition, Day 6 embryos showed increased mitochondrial activity, with decreased levels of ROS and GSH in the Nob 2.5 group compared to the other groups. Both Nob 2.5 and Nob 5 embryos showed higher TCN compared to the Control and DMSO groups. Furthermore, Nob 2.5 and Nob 5 upregulated the expression of Superoxide dismutase type 1 (SOD1) and Glucose-6-phosphate dehydrogenase (G6PDH) genes, which could help to counteract oxidative stress during IVC. In conclusion, the addition of Nob during the first 48 h of IVC increased porcine embryo development rates and enhanced their quality, including the upregulation of relevant genes that potentially improved the overall efficiency of the IVP system.
  • Item
    Acquisition of fertilization competence in guinea pig spermatozoa under different capacitation protocols
    (Theriogenology, 2023) Cañón Beltrán, Karina Esperanza; Cajas Suárez, Yulia Nathaly; González Martínez, María Encina; Fernández-González, Raul; Fierro, Natacha; Lorenzo González, Pedro Luis; Arias Álvarez, María; García García, Rosa María; Gutiérrez Adán, Alfonso; Rizos, Dimitri
    Guinea pig in vitro fertilization (IVF) are poorly developed due to the limited accessibility to oocytes and the lack of an efficient method of sperm capacitation. Thus, we aimed to evaluate different capacitation protocols that we validated through sperm analysis and using heterologous (He) IVF with zona-intact bovine oocytes. Spermatozoa of guinea pigs were collected and processed separately by 4 different protocols: A) Spermatozoa were obtained by flushing the lumen of one cauda epididymis and incubated in a minimal culture medium (MCM); B) One epididymis was placed in a prewarmed of M2 medium and gently minced with fine scissors. Spermatozoa were incubated in a modified human tubal fluid medium (HTF). In both protocols, the spermatozoa were capacitated at 37 °C under an atmosphere of 5% CO2 for 2 h. In the protocols C and D, the spermatozoa were collected by flushing the lumen of the cauda epididymis and selected by commercial density gradient Bovipure® (Nidacon Laboratories AB, Göthenborg, Sweden), according to the manufacturer's instructions. Then for Protocol C) spermatozoa were incubated in MCM medium supplemented with 10 mg/mL heparin (MCM-Hep); while for Protocol D) spermatozoa were incubated in FERT medium supplemented 10 mg/mL heparin (FERT-Hep). Incubation of C and D protocols were performed at 38.5 °C under an atmosphere of 5% CO2 for 2 h. Capacitation protocols C and D showed a higher percentage of viability, total and hyperactive-like motility, and acrosome reaction compared to protocols A and B. For this reason, protocols C and D were used for further He-IVF analysis. Guinea pig sperm and matured zona-intact bovine oocytes were co-incubated at 5% CO2 and 38.5 °C. Sperm-oocyte interaction was assessed at 2.5 h post-insemination (hpi) and pronuclear formation (PrF) were evaluated at 18, 20, 22, 24 and 26 hpi, while the cleavage rate was evaluated at 48 hpi. In protocol D, PrF was significantly higher than in protocol C (P ≤ 0.05) at every time point evaluated. Also, the cleavage rate at 48 hpi was higher (P ≤ 0.05) in He-IVF protocol D (69.8 ± 1.7%) compared to He-IVF protocol C (49.1 ± 1.1%). In conclusion, we determined the most adequate sperm capacitation conditions for guinea pig that allow zona-intact bovine oocyte penetration and lead to hybrid embryo formation, suggesting that these conditions could be optimal to develop IVF in guinea pigs.