Person:
Portolés Pérez, María Teresa

Loading...
Profile Picture
First Name
María Teresa
Last Name
Portolés Pérez
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Químicas
Department
Bioquímica y Biología Molecular
Area
Bioquímica y Biología Molecular
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet IDGoogle Scholar ID

Search Results

Now showing 1 - 10 of 19
  • Item
    Effects of bleaching on osteoclast activity and their modulation by osteostatin and fibroblast growth factor 2
    (Journal of Colloid and Interface Science, 2016) Torres-Rodriguez, Carolina; Portolés Pérez, María Teresa; Matesanz Sancho, María Concepción; Linares, Javier; Feito Castellano, María José; Izquierdo Barba, Isabel; Esbrit, Pedro; Vallet Regí, María Dulce Nombre
    Hypothesis: Dental bleaching with H2O2 is a common daily practice in dentistry to correct discoloration of anterior teeth. The aim of this study has been to determine whether this treatment of human teeth affects growth, differentiation and activity of osteoclast-like cells, as well as the putative modulatory action of osteostatin and fibroblast growth factor 2 (FGF-2). Experiments: Previously to the in vitro assays, structural, physical-chemical and morphological features of teeth after bleaching were studied. Osteoclast-like cells were cultured on human dentin disks, pre-treated or not with 38% H2O2 bleaching gel, in the presence or absence of osteostatin (100 nM) or FGF-2 (1 ng/ml). Cell proliferation and viability, intracellular content of reactive oxygen species (ROS), pro-inflammatory cytokine (IL-6 and TNF alpha) secretion and resorption activity were evaluated. Findings: Bleaching treatment failed to affect either the structural or the chemical features of both enamel and dentin, except for slight morphological changes, increased porosity in the most superficial parts (enamel), and a moderate increase in the wettability degree. In this scenario, bleaching produced an increased osteoclast-like cell proliferation but decreased cell viability and cytokine secretion, while it augmented resorption activity on dentin. The presence of either osteostatin or FGF-2 reduced the osteoclast-like cell proliferation induced by bleaching. FGF-2 enhanced ROS content, whereas osteostatin decreased ROS but increased TNF alpha secretion. The bleaching effect on resorption activity was increased by osteostatin, but this effect was less evident with FGF-2. Conclusions: These findings further confirm the deleterious effects of tooth bleaching by affecting osteoclast growth and function as well as different modulatory actions of osteostatin and FGF-2. (C) 2015 Elsevier Inc. All rights reserved.
  • Item
    Effects of 3D nanocomposite bioceramic scaffolds on the immune response
    (Journal of Materials Chemistry B, 2014) Cicuéndez Maroto, Mónica; Portoles, Pilar; Montes Casado, María; Izquierdo Barba, Isabel; Vallet Regí, María Dulce Nombre; Portolés Pérez, María Teresa
    The interaction of new nanocomposite mesoporous glass/hydroxyapatite (MGHA) scaffolds with immune cells involved in both innate and acquired immunity has been studied in vitro as an essential aspect of their biocompatibility assessment. Since the immune response can be affected by the degradation products of bioresorbable scaffolds and scaffold surface changes, both processes have been evaluated. No alterations in proliferation and viability of RAW-264.7 macrophage-like cells were detected after culture on MGHA scaffolds which did not induce cell apoptosis. However, a slight cell size decrease and an intracellular calcium content increase were observed after contact of this cell line with MGHA scaffolds or their extracts. Although no changes in the percentages of RAW cells with low and high contents of reactive oxygen species (ROS) are observed by the treatment with 7 day extracts, this study has revealed modifications of these percentages after direct contact with scaffolds and by the treatment with 24 h extracts, related to the high reactivity/bioactivity of this MGHA nanocomposite at initial times. Furthermore, when normal fresh murine spleen cells were used as an experimental model closer to physiological conditions, no significant alterations in the activation of different immune cell subpopulations were detected in the presence of 24 h MGHA extract. MGHA scaffolds did not affect either the spontaneous apoptosis or intracellular cytokine expression (IL-2, IL-10, IFN-gamma, and TNF-alpha.) after 24 h treatment. The results obtained in the present study with murine immune cell subpopulations (macrophages, lymphocytes B, lymphocytes T and natural killer cells) support the biocompatibility of the MGHA material and suggest an adequate host tissue response to their scaffolds upon their implantation.
  • Item
    Mesoporous bioactive glass/ɛ-polycaprolactone scaffolds promote bone regeneration in osteoporotic sheep
    (Acta Biomaterialia, 2019) Gómez Cerezo, María Natividad; Casarrubios Molina, Laura; Saiz-Pardo, M.; Ortega, L.; De Pablo, D.; Díaz-Güemes, I.; Fernández-Tomé, E.; Enciso, S; Sanchez-Margallo, F. M.; Portolés Pérez, María Teresa; Arcos Navarrete, Daniel; Vallet Regí, María Dulce Nombre
    Macroporous scaffolds made of a SiO2-CaO-P2O5 mesoporous bioactive glass (MBG) and ɛpolycaprolactone (PCL) have been prepared by robocasting. These scaffolds showed an excellent in vitro biocompatibility in contact with osteoblast like cells (Saos 2) and osteoclasts derived from RAW 264.7 macrophages. In vivo studies were carried out by implantation into cavitary defects drilled in osteoporotic sheep. The scaffolds evidenced excellent bone regeneration properties, promoting new bone formation at both the peripheral and the inner parts of the scaffolds, thick trabeculae, high vascularization and high presence of osteoblasts and osteoclasts. In order to evaluate the effects of the local release of an antiosteoporotic drug, 1% (%wt) of zoledronic acid was incorporated to the scaffolds. The scaffolds loaded with zoledronic acid induced apoptosis in Saos 2 cells, impeded osteoclast differentiation in a time dependent manner and inhibited bone healing, promoting an intense inflammatory response in osteoporotic sheep.
  • Item
    Endocytic mechanisms of graphene oxide nanosheets in 2 osteoblasts, hepatocytes and macrophages
    (ACS Appl. Mater. Interfaces, 2014) Linares, J.; Matesanz Sancho, Mª Concepción; Vila, Mercedes; Feito Castellano, María José; Vallet Regí, María Dulce Nombre; Marques, Paula A.; Portolés Pérez, María Teresa
    Nano-graphene oxide (GO) has attracted great interest in nanomedicine due to its own intrinsic properties and its possible biomedical applications such as drug delivery, tissue engineering and hyperthermia cancer therapy. However, the toxicity of GO nanosheets is not yet well-known and it is necessary to understand its entry mechanisms into mammalian cells in order to avoid cell damage and human toxicity. In the present study, the cellular uptake of pegylated GO nanosheets of ca. 100 nm labeled with fluorescein isothiocyanate (FITC-PEG-GOs) has been evaluated in the presence of eight inhibitors (colchicine, wortmannin, amiloride, cytochalasin B, cytochalasin D, genistein, henylarsine oxide and chlorpromazine) that specifically affect ifferent endocytosis mechanisms. Three cell types were chosen for this study: human Saos-2 osteoblasts, human HepG2 hepatocytes and murine RAW-264.7 macrophages. The results show that different mechanisms take part in FITC-PEG-GOs uptake, depending on the characteristics of each cell type. However, cropynocytosis seems to be a general internalization process in the three cell lines analyzed. Besides macropynocytosis, FITC-PEG-GOs can enter through pathways dependent on microtubules in Saos-2 osteoblasts, and through clathrin-dependent mechanisms in HepG2 hepatocytes and RAW-264.7 macrophages. HepG2 cells can also phagocytize FITC-PEG-GOs. These findings help to understand the interactions at the interface of GO nanosheets and mammalian cells and must be considered in further studies focused on their use for biomedical applications.
  • Item
    Synergistic effect of Si-hydroxyapatite coating and VEGF adsorption on Ti6Al4V-ELI scaffolds for bone regeneration in an osteoporotic bone environment.
    (Acta Biomaterialia, 2018) Izquierdo Barba, Isabel; Santos-Ruiz, L; Becerra, J; Feito Castellano, María José; Fernandez-Villa, D; Serrano, M.C; Diaz-Gúemes, I; Fernandez-Tome, B; Enciso, S; Sanchez-Margallo, F.M; Monopoli, D; Alfonso, H; Portolés Pérez, María Teresa; Arcos Navarrete, Daniel; Vallet Regí, María Dulce Nombre
    The osteogenic and angiogenic responses to metal macroporous scaffolds coated with silicon substituted hydroxyapatite (SiHA) and decorated with vascular endothelial growth factor (VEGF) have been evaluated in vitro and in vivo. Ti6Al4V-ELI scaffolds were prepared by electron beam melting and subsequently coated with Ca10(PO4)5.6(SiO4)0.4(OH)1.6 following a dip coating method. In vitro studies demonstrated that SiHA stimulates the proliferation of MC3T3-E1 pre-osteoblastic cells, whereas the adsorption of VEGF stimulates the proliferation of EC2 mature endothelial cells. In vivo studies were carried out in an osteoporotic sheep model, evidencing that only the simultaneous presence of both components led to a significant increase of new tissue formation in osteoporotic bone. STATEMENT OF SIGNIFICANCE Reconstruction of bones after severe trauma or tumors extirpation is one of the most challenging tasks in the field of orthopedic surgery. This scenario is even more complicated in the case of osteoporotic patients, since their bone regeneration capability is decreased. In this work we present a porous implant that promotes bone regeneration even in osteoporotic bone. By coating the implant with an osteogenic bioceramics such as silicon substituted hydroxyapatite and subsequent adsorption of vascular endothelial growth factor, these implants stimulate the bone ingrowth when they are implanted in osteoporotic sheep.
  • Item
    Early in vitro response of macrophages and T lymphocytes to nanocrystalline hydroxyapatites
    (Journal of Colloid and Interface Science, 2014) Matesanz Sancho, María Concepción; Feito Castellano, María José; Oñaderra Sánchez, Mercedes; Ramirez Santillán, Cecilia; Casa, Carmen da; Arcos Navarrete, Daniel; Rojo, José María; Vallet Regí, María Dulce Nombre; Portolés Pérez, María Teresa
    Hypothesis: Synthetic hydroxyapatite (HA) and Si substituted hydroxyapatite (SiHA) are calcium phosphate ceramics currently used in the field of dentistry and orthopaedic surgery. The preparation of both biomaterials as polycrystalline solid pieces or grains formed by nanocrystallites has awakened a great interest to enhance the bioactive behavior due to the microstructural defects and the higher surface area. The study of the macrophage and lymphocyte behavior in contact with nanocrystalline HA and SiHA will allow to elucidate the immune response which conditions the success or rejection of these biomaterials. Experiments: HA and SiHA granules (with sizes of tens of microns) have been prepared by controlled aqueous precipitation avoiding subsequent high temperature sintering. HA and SiHA granules were constituted by crystallites smaller than 50 nm. The effects of both nanocrystalline materials on immune system have been evaluated with macrophages (main components of innate immune system) and T lymphocytes (specific cells of adaptive response) after short-term culture as in vitro models of the early immune response. Findings: Significant decreases of macrophage proliferation and phagocytic activity, increased production of inflammatory cytokines (IL-6, TNF-a) and T lymphocyte apoptosis, were induced by these nanocrystalline ceramics suggesting that, after in vivo implantation, they induce significant effects on immune responses, including an early activation of the innate immune system. (C) 2013 Elsevier Inc. All rights reserved.
  • Item
    Nanocrystallinity effects on osteoblast and osteoclast response to silicon substituted hydroxyapatite
    (Journal of Colloid and Interface Science, 2016) Casarrubios Molina, Laura; Matesanz Sancho, María Concepción; Sánchez Salcedo, Sandra; Arcos Navarrete, Daniel; Vallet Regí, María Dulce Nombre; Portolés Pérez, María Teresa
    Hypothesis: Silicon substituted hydroxyapatites (SiHA) are highly crystalline bioceramics treated at high temperatures (about 1200ºC) which have been approved for clinical use with spinal, orthopedic, periodontal, oral and craniomaxillofacial applications. The preparation of SiHA with lower temperature methods (about 700ºC) provides nanocrystalline SiHA (nano-SiHA) with enhanced bioreactivity due to higher surface area and smaller crystal size. The aim of this study has been to know the nanocrystallinity effects on the response of both osteoblasts and osteoclasts (the two main cell types involved in bone remodelling) to silicon substituted hydroxyapatite. Experiments: Saos-2 osteoblasts and osteoclast-like cells (differentiated from RAW-264.7 macrophages)have been cultured on the surface of nano-SiHA and SiHA disks and different cell parameters have been evaluated: cell adhesion, proliferation, viability, intracellular content of reactive oxygen species, cell cycle phases, apoptosis, cell morphology, osteoclast-like cell differentiation and resorptive activity. Findings: This comparative in vitro study evidences that nanocrystallinity of SiHA affects the cell/biomaterial interface inducing bone cell apoptosis by loss of cell anchorage (anoikis), delaying osteoclast-like cell differentiation and decreasing the resorptive activity of this cell type. These results suggest the potential use of nano-SiHA biomaterial for preventing bone resorption in treatment of osteoporotic bone.
  • Item
    Silicon substituted hydroxyapatite/VEGF scaffolds stimulate bone regeneration in osteoporotic sheep.
    (Acta Biomaterialia, 2019) Casarrubios Molina, Laura; Gómez Cerezo, María Natividad; Sánchez Salcedo, Sandra; Feito Castellano, María José; Serrano, M.C.; Saiz-Pardo, M.; Ortega Menor, Lorena; De Pablo, D.; Díaz-Güemes, I.; Fernández-Tomé, E.; Enciso, S; Portolés Pérez, María Teresa; Sanchez-Margallo, F.M; Arcos Navarrete, Daniel; Vallet Regí, María Dulce Nombre; Sanchez-Margallo, F. M.
    Silicon-substituted hydroxyapatite (SiHA) macroporous scaffolds have been prepared by robocasting. In order to optimize their bone regeneration properties, we have manufactured these scaffolds presenting different microstructures: nanocrystalline and crystalline. Moreover, their surfaces have been decorated with vascular endothelial growth factor (VEGF) to evaluate the potential coupling between vascularization and bone regeneration. In vitro cell culture tests evidence that nanocrystalline SiHA hinders pre-osteblast proliferation, whereas the presence of VEGF enhances the biological functions of both endothelial cells and pre-osteoblasts. The bone regeneration capability has been evaluated using an osteoporotic sheep model. In vivo observations strongly correlate with in vitro cell culture tests. Those scaffolds made of nanocrystalline SiHA were colonized by fibrous tissue, promoted inflammatory response and forested osteoclast recruitment. These observations discard nanocystalline SiHA as a suitable material for bone regeneration purposes. On the contrary, those scaffolds made of crystalline SiHA and decorated with VEGF exhibited bone regeneration properties, with high ossification degree, thicker trabeculae and higher presence of osteoblasts and blood vessels. Considering these results, macroporous scaffolds made of SiHA and decorated with VEGF are suitable bone grafts for regeneration purposes, even in adverse pathological scenarios such as osteoporosis.
  • Item
    Tailoring hierarchical meso- macroporous 3D scaffolds: from nano to macro
    (Journal of Materials Chemistry B, 2014) Cicuéndez Maroto, Mónica; Malmsten, Martin; Doadrio Villarejo, Juan Carlos; Portolés Pérez, María Teresa; Izquierdo Barba, Isabel; Vallet Regí, María Dulce Nombre
    Bone tissue regeneration requires the use of 3D scaffolds which mimic the architecture of the natural extracellular matrix, creating an adequate microenvironment for bone cell growth. Such 3D scaffolds need surface properties suitable for biological recognition in the early stage of cell adhesion, necessary to ensure complete cell colonization, retained cell functionality, and subsequently bone regeneration. Herein, hierarchical 3D scaffolds based on new hydroxyapatite/mesoporous glass nanocomposite bioceramic (MGHA) exhibiting different scales of porosity have been synthesized. These 3D scaffolds possess: (i) highly ordered mesopores with diameters of 10 nm; (ii) macropores with diameters in the 30-80 mu m range with interconnections of 1-10 mu m; and (iii) large macropores of ca. 500 mu m. To improve their surface properties, 3D scaffolds were modified through direct functionalization with amine propyl groups, which notably improve preosteoblast adhesion, proliferation (2.3 fold), differentiation (4.8 fold) and further cell colonization of these scaffolds. The observed enhancement can be related to these amine groups which favour early adhesion, e. g., based on nonspecific protein adsorption as was demonstrated by ellipsometry. These results suggest that the combination of hierarchical structure design and amine surface modification of hydroxyapatite/mesoporous nanocomposite scaffolds yields a double increase in cell proliferation, as well as a quadruple increase in cell differentiation, demonstrating the potential of these nanocomposite materials for bone tissue regeneration purposes.
  • Item
    Effects of nanocrystalline hydroxyapatites on macrophage polarization
    (Journal of Materials Chemistry B, 2016) Linares, J.; Fernández, A. B.; Feito Castellano, María José; Matesanz Sancho, María Concepción; Sánchez-Salcedo, Sandra; Arcos Navarrete, Daniel; Vallet Regí, María Dulce Nombre; Rojo, J.M.; Portolés Pérez, María Teresa
    Silicon substituted and nanocrystalline hydroxyapatites have attracted the attention of many researchers due to their up-regulation in osteoblast cell metabolism and enhanced bioreactivity, respectively. On the other hand, the biomaterial success or failure depends ultimately on the immune response triggered after its implantation. Macrophages are the main components of the innate immune system with an important role in healing and tissue remodelling due to their remarkable functional plasticity, existing in a whole spectrum of functional populations with varying phenotypic features. The effects of nanocrystalline hydroxyapatite (nano-HA) and nanocrystalline silicon substituted hydroxyapatite (nano-SiHA) on the macrophage populations defined as pro-inflammatory (M1) and reparative (M2) phenotypes have been evaluated in the present study using RAW 264.7 cells and mouse peritoneal macrophages as in vitro models. M1 and M2 macrophage phenotypes were characterized by flow cytometry and confocal microscopy by the expression of CD80 and CD163, known as M1 and M2 markers, respectively. The polarization of primary macrophages towards the M1 or M2 phenotype was induced with the pro-inflammatory stimulus LPS or the anti-inflammatory stimulus IL-10, respectively, evaluating the biomaterial effects under these conditions. Our results show that both nano-HA and nano-SiHA favour the macrophage polarization towards an M2 reparative phenotype, decreasing M1 population and ensuring an appropriate response in the implantation site of these biomaterials designed for bone repair and bone tissue engineering.