Person:
Martínez Del Pozo, Álvaro

Loading...
Profile Picture
First Name
Álvaro
Last Name
Martínez Del Pozo
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Químicas
Department
Bioquímica y Biología Molecular
Area
Bioquímica y Biología Molecular
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet IDGoogle Scholar ID

Search Results

Now showing 1 - 7 of 7
  • Item
    Role of histidine-50, glutamic acid-96 and histidine-137 in the ribonucleolytic mechanism of the ribotoxin alpha-sarcin
    (Proteins: Structure, Function and Genetics, 1999) Lacadena García-Gallo, Francisco Javier; Martínez Del Pozo, Álvaro; Martínez Ruiz, Antonio; Pérez-Cañadillas, José Manuel; Bruix, Marta; Mancheño Gómez, José Miguel; Gavilanes Franco, José Gregorio; Oñaderra Sánchez, Mercedes
    alpha-Sarcin is a ribotoxin secreted by the mold Aspergillus giganteus that degrades the ribosomal RNA by acting as a cyclizing ribonuclease. Three residues potentially involved in the mechanism of catalysis--histidine-50, glutamic acid-96, and histidine-137--were changed to glutamine. Three different single mutation variants (H50Q, E96Q, H137Q) as well as a double variant (H50/137Q) and a triple variant (H50/137Q/E96Q) were prepared and isolated to homogeneity. These variants were spectroscopically (circular dichroism, fluorescence emission, and proton nuclear magnetic resonance) characterized. According to these results, the three-dimensional structure of these variants of alpha-sarcin was preserved; only very minor local changes were detected. All the variants were inactive when assayed against either intact ribosomes or poly(A). The effect of pH on the ribonucleolytic activity of alpha-sarcin was evaluated against the ApA dinucleotide. This assay revealed that only the H50Q variant still retained its ability to cleave a phosphodiester bond, but it did so to a lesser extent than did wild-type alpha-sarcin. The results obtained are interpreted in terms of His137 and Glu96 as essential residues for the catalytic activity of alpha-sarcin (His137 as the general acid and Glu96 as the general base) and His50 stabilizing the transition state of the reaction catalyzed by alpha-sarcin.
  • Item
    Secretion of Recombinant Pro- and Mature Fungal α-Sarcin Ribotoxin by the Methylotrophic YeastPichia pastoris:The Lys–Arg Motif Is Required for Maturation
    (Protein Expression and Purification, 1998) Martínez Ruiz, Antonio; Martínez Del Pozo, Álvaro; Lacadena García-Gallo, Francisco Javier; Mancheño Gómez, José Miguel; Oñaderra Sánchez, Mercedes; Carlos López-Otı́n; Gavilanes Franco, José Gregorio
    α-Sarcin is a ribosome-inactivating protein from the moldAspergillus giganteus.The methylotrophic yeastPichia pastorishas been transformed with two plasmids (pHILD2preαS and pHILS1preαS), which contain the complete α-sarcin cDNA, including its original fungal leader peptide, under the control of yeast alcohol oxidase promoter. The second one is indeed fused to the signal sequence ofP. pastorisacid phosphatase. The transformed yeasts secreted both mature and pro-α-sarcin. The presence of this pro-α-sarcin in the yeast extracellular medium is due to an inefficient recognition of the pro-sequence by a putative Kex2p-like endopeptidase. A third plasmid accounting for a single mutation of the α-sarcin leader peptide was designed to produce a more efficient Kex2p recognition motif. This approach resulted in the extracellular production of only the mature protein, suggesting the existence of a two-step mechanism for processing its leader peptide. This recombinant α-sarcin is identical to the original fungal protein, according to activity and spectroscopic criteria. In addition, pro-α-sarcin, which has been characterized for the first time, also exhibits ribonucleolytic activity as the mature protein does. Therefore, protection of the producing cells against this kind of ribotoxins may depend on an efficient recognition of the signal sequence followed by translocation of the nascent polypeptide to the endoplasmic reticulum.
  • Item
    Characterization of a natural larger form of the antifungal protein (AFP) from Aspergillus giganteus
    (Biochim Biophys Acta, 1997) Martínez Ruiz, Antonio; Martínez Del Pozo, Álvaro; Lacadena García-Gallo, Francisco Javier; Mancheño Gómez, José Miguel; Oñaderra Sánchez, Mercedes; Gavilanes Franco, José Gregorio
    Two major proteins, a-sarcin and an antifungal polypeptide AFP , are secreted by the mould Ž . Aspergillus giganteus MDH 18894 when it is cultured for 70–80 h. A third major protein is also found in the extracellular medium at 48–60 h, but it disappears as the culture proceeds. This protein has been isolated and characterized in terms of apparent molecular mass, electrophoretic and chromatographic behaviour, NH -terminal primary structure, amino acid content, spectroscopical 2 features, reactivity against anti-AFP antibodies, and antifungal activity. Based on the obtained results it would be an extracellular inactive precursor form of AFP, designated as the large form of AFP lf-AFP . Its amino acid composition is Ž . identical to that of AFP but containing six extra residues. NH -terminal sequence analysis of the first eight amino acid 2 residues of this polypeptide revealed that the extra residues can be perfectly accommodated within the DNA-deduced sequence of the precursor form of AFP. Its alignment with precursor sequences of different proteins, secreted by a variety of Aspergillus spp., reveals the existence of a common tetrapeptide at the carboxy-terminal end of their leader peptides. This sequence would be IlerLeu-Xaa-Yaa-Arg, being mostly Xaa and Yaa an acid residue Asp Ž . rGlu and alanine, respectively. The presence of lf-AFP as an extracellular protein would be in perfect agreement with the existence of this tetrapeptide motif, that can be involved in the protein secretion mechanisms of filamentous fungi.
  • Item
    Ribotoxins are a more widespread group of proteins within the filamentous fungi than previously believed
    (Toxicon, 1999) Martínez Ruiz, Antonio; Richard Kao; Julian Davies; Martínez Del Pozo, Álvaro
    a-Sarcin, restrictocin and mitogillin are the best known members of the family of fungal ribotoxins. In recent years, new members of this family have been discovered and characterised. In this work, we study the occurrence of ribotoxins among di erent species of fungi. The presence of ribotoxins has been identi®ed in some new species by means of genetic studies, as well as expression and activity assays. The ribotoxin genes have been partially sequenced, and demonstrate a high degree of similarity. These studies demonstrate that these toxins are more widespread than previously considered. This is surprising, considering the ribotoxins are such speci®c and potent toxins, of unknown biological function. These studies con®rm the hypothesis that these proteins are naturally engineered toxins derived from ribonucleases of broad substrate speci®city.
  • Item
    The cytotoxin α‐sarcin behaves as a cyclizing ribonuclease
    (FEBS Letters, 1998) Lacadena García-Gallo, Francisco Javier; Martínez Del Pozo, Álvaro; Valle Lacadena; Martínez Ruiz, Antonio; Mancheño Gómez, José Miguel; Oñaderra Sánchez, Mercedes; Gavilanes Franco, José Gregorio
    The hydrolysis of adenylyl(3PC5P)adenosine (ApA) and guanylyl(3PC5P)adenosine (GpA) dinucleotides by the cytotoxic protein K-sarcin has been studied. Quantitative analysis of the reaction has been performed through reversephase chromatographic (HPLC) separation of the resulting products. The hydrolysis of the 3P-5P phosphodiester bond of these substrates yields the 2P-3P cyclic mononucleotide; this intermediate is converted into the corresponding 3P-monophosphate derivative as the final product of the reaction. The values of the apparent Michaelis constant (KM), kcat and kcat/ KM have also been calculated. The obtained results fit into a twostep mechanism for the enzymatic activity of K-sarcin and allow to consider this protein as a cyclizing RNase. z 1998 Federation of European Biochemical Societies.
  • Item
    Mitochondrial Na+ controls oxidative phosphorylation and hypoxic redox signalling
    (Nature (London), 2020) Hernansanz Agustín, Pablo; Choya Foces, Carmen; Carregal Romero, Susana; Ramos, Elena; Oliva, Tamara; Villa Piña, Tamara; Moreno Gutiérrez, Laura; Izquierdo Alvarez, Alicia; Cabrera Garcia, J. Daniel; Cortés, Ana; Lechuga Vieco, Ana Victoria; Jadiya, Pooja; Navarro, Elisa; Parada, Esther; Palomino Antolín, Alejandra; Tello, Daniel; Acín Pérez, Rebeca; Rodríguez Aguilera, Juan Carlos; Navas, Plácido; Cogolludo Torralba, Ángel Luis; López Montero, Iván; Egea, Javier; López, Manuela G.; Elrod, John W.; Martínez Del Pozo, Álvaro; Ruiz Cabello, J.; Bogdanova, Anna; Enríquez, José Antonio; Martínez Ruiz, Antonio
    All metazoans depend on O2 delivery and consumption by the mitochondrial oxidative phosphorylation (OXPHOS) system to produce energy. A decrease in O2 availability (hypoxia) leads to profound metabolic rewiring. In addition, OXPHOS uses O2 to produce reactive oxygen species (ROS) that can drive cell adaptations through redox signalling, but also trigger cell damage1–4, and both phenomena occur in hypoxia4–8. However, the precise mechanism by which acute hypoxia triggers mitochondrial ROS production is still unknown. Ca2+ is one of the best known examples of an ion acting as a second messenger9, yet the role ascribed to Na+ is to serve as a mere mediator of membrane potential and collaborating in ion transport10. Here we show that Na+ acts as a second messenger regulating OXPHOS function and ROS production by modulating fluidity of the inner mitochondrial membrane (IMM). We found that a conformational shift in mitochondrial complex I during acute hypoxia11 drives the acidification of the matrix and solubilization of calcium phosphate precipitates. The concomitant increase in matrix free-Ca2+ activates the mitochondrial Na+/Ca2+ exchanger (NCLX), which imports Na+ into the matrix. Na+ interacts with phospholipids reducing IMM fluidity and mobility of free ubiquinone between complex II and complex III, but not inside supercomplexes. As a consequence, superoxide is produced at complex III, generating a redox signal. Inhibition of mitochondrial Na+ import through NCLX is sufficient to block this pathway, preventing adaptation to hypoxia. These results reveal that Na+ import into the mitochondrial matrix controls OXPHOS function and redox signalling through an unexpected interaction with phospholipids, with profound consequences in cellular metabolism.
  • Item
    Sequence determination and molecular characterization of gigantin, a cytotoxic protein produced by the mouldAspergillus giganteusIFO 5818
    (Archives of Biochemestry and Biophysics, 1997) Jérémie Wirth; Martínez Del Pozo, Álvaro; Mancheño Gómez, José Miguel; Martínez Ruiz, Antonio; Lacadena García-Gallo, Francisco Javier; Oñaderra Sánchez, Mercedes; Gavilanes Franco, José Gregorio
    Gigantin is a 17-kDa ribonuclease secreted by Aspergillus giganteus IFO 5818. The sequence of the genomic DNA coding for this protein is reported. The deduced amino acid sequence reveals nine amino acid variations with respect to alpha-sarcin, a well-characterized ribosome-inactivating protein from A. giganteus MDH 18894. The peptides obtained after tryptic digestion of reduced and carboxyamidomethylated gigantin have been chromatographically separated. The analysis of these peptides in comparison to those originating from alpha-sarcin corroborates the above sequence differences. These do not sensibly modify the conformation of the protein, based on the coincidence of the circular dichroism and fluorescence emission spectra of the two proteins. The obtained results are discussed in terms of the involvement of the distinctive residues in the immunological and catalytic properties that distinguish gigantin from alpha-sarcin.