Person:
Sanz García, Eduardo Santiago

Loading...
Profile Picture
First Name
Eduardo Santiago
Last Name
Sanz García
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Químicas
Department
Química Física
Area
Química Física
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet IDGoogle Scholar ID

Search Results

Now showing 1 - 2 of 2
  • Item
    Seeding approach to nucleation in the NVT ensemble: The case of bubble cavitation in overstretched Lennard Jones fluids
    (Physical review E, 2020) Rosales Peláez, Pablo; Sánchez Burgos, Ignacio; Valeriani, Chantal; Vega De Las Heras, Carlos; Sanz García, Eduardo Santiago
    Simulations are widely used to study nucleation in first order phase transitions due to the fact that they have access to the relevant length and time scales. However, simulations face the problem that nucleation is an activated process. Therefore, rare event simulation techniques are needed to promote the formation of the critical nucleus. The Seeding method, where the simulations are started with the nucleus already formed, has proven quite useful in efficiently providing estimates of the nucleation rate for a wide range of orders of magnitude. So far, Seeding has been employed in the NPT ensemble, where the nucleus either grows or redissolves. Thus, several trajectories have to be run in order to find the thermodynamic conditions that make the seeded nucleus critical. Moreover, the nucleus lifetime is short and the statistics for obtaining its properties is consequently poor. To deal with these shortcomings we extend the Seeding method to the NVT ensemble. We focus on the problem of bubble nucleation in a metastable Lennard Jones fluid. We show that, in the NVT ensemble, it is possible to equilibrate and stabilise critical bubbles for a long time. The nucleation rate inferred from NVT-Seeding is fully consistent with that coming from NPT-Seeding. The former is quite suitable to obtain the nucleation rate along isotherms, whereas the latter is preferable if the dependence of the rate with temperature at constant pressure is required. Care should be taken with finite size effects when using NVT-Seeding. Further work is required to extend NVT seeding to other sorts of phase transitions.
  • Item
    Seeding approach to bubble nucleation in superheated Lennard-Jones fluids
    (Physical review E, 2019) Rosales Peláez, Pablo; García Cid, M. I.; Valeriani, Chantal; Vega De Las Heras, Carlos; Sanz García, Eduardo Santiago
    We investigate vapor homogeneous nucleation in a superheated Lennard-Jones liquid with computer simulations. Special simulation techniques are required to address this study since the nucleation of a critical vapor bubble-one that has an equal chance to grow or shrink-in a moderately superheated liquid is a rare event. We use the Seeding method, which combines Classical Nucleation Theory with computer simulations of a liquid containing a vapor bubble to provide bubble nucleation rates in a wide temperature range. Seeding has been successfully applied to investigate the nucleation of crystals in supercooled fluids, and here we apply it to the liquid-to-vapor transition. We find that the Seeding method provides nucleation rates that are consistent with independent calculations not based on the assumptions of Classical Nucleation Theory. Different criteria to determine the radius of the critical bubble give different rate values. The accuracy of each criterion depends of the degree of superheating. Moreover, seeding simulations show that the surface tension depends on pressure for a given temperature. Therefore, using Classical Nucleation Theory with the coexistence surface tension does not provide good estimates of the nucleation rate.